outp

My Cart

To monitor the manufacturing process of mobile phones, a quality contr

Question


To monitor the manufacturing process of mobile phones, a quality controller randomly selected 100 mobile phones from the production line, each day over 15 days. The mobile phones were inspected for defectives and the number of defective mobile phones found each day was recorded. The data are given below:

Subgroup Number Number of Mobile Phones Inspected Number of Defective Mobile Phones
1 100 3
2 100 6
3 100 4
4 100 6
5 100 20
6 100 2
7 100 6
8 100 7
9 100 3
10 100 0
11 100 6
12 100 15
13 100 5
14 100 7
15 100 6

 i) Determine the trial centre line and control limits for the fraction defective using the above data. 

ii) Contract the control chart on graph paper and determine that the process is stable or not. If there is any out-of-control point, determine the revised centre line and control limits.


Posted on : 2023-02-14 13:07:26 | Author : IGNOU Academy | View : 50

Click Here to Order on WhatsApp

Login or SignUp to View Answer / Comment or Ask Question.. Its Free

Word Count : 893

To construct a control chart for the fraction defective, we need to calculate the proportion defective for each subgroup. The formula for the proportion defective is:

p = (number of defective mobile phones) / (number of mobile phones inspected)

Using the data provided, we can calculate the proportion defective for each subgroup as follows:

Subgroup 1: p1 = 3/100 = 0.03
Subgroup 2: p2 = 6/100 = 0.06
Subgroup 3: p3 = 4/100 = 0.04
Subgroup 4: p4 = 6/100 = 0.06
Subgroup 5: p5 = 20/100 = 0.2
Subgroup 6: p6 = 2/100 = 0.02
Subgroup 7: p7 = 6/100 = 0.06
Subgroup 8: p8 = 7/100 = 0.07
Subgroup 9: p9 = 3/100 = 0.03
Subgroup 10: p10 = 0/100 = 0
Subgroup 11: p11 = 6/100 = 0.06
Subgroup 12: p12 = 15/100 = 0.15
Subgroup 13: p13 = 5/100 = 0.05
Subgroup 14: p14 = 7/100 = 0.07
Subgroup 15: p15 = 6/100 = 0.06

__________ _____ ____________ _____________ ____ ___________.
______ __________ ___________ ____ ____________ _____ ________ ________ __________ ___ ________ ______ __________ ________ __.
_____________ ____ ______ ____________ __________ ___ _______.
__________ _______ ______ _________ ___________ ___________ ___ __ __________.
_____________ __ _________ ____________ ____________ ____ ______ _________.
__ ____ _____________ __________ _____ ____.
_______ ______ __ _____________ ______ __ __ _________ ___________.
_______ ______ __________ ___ _______ _________.
__________ ___ ___ _____ ___________ ___ ____________ ______ __ _________.
________ ___ _____________ _____ ____________ ______ _____________ ________ ____________ ____.
________ ____ _________ ___ __ ________ ________ ___________ _____ _________ ___________ ______ _____________ _______ ___.
___ ___ __ __ _______ _________ __________ ____ ____ _________ __________ _____________ ___________ _____.
__ ______ _______ _____________ ____ _____________ _________ __________ ____ __________ ____ _______ __________ _______ _______.
___________ _____ __ ____ ____________ __________ _______ ____________ ____________ ______.
___ ____ ___ ___________ ________ __________ ________ _____________ ___ ______ ____________ __ _________ _________.
________ _____________ ____ ________ ______ ____ ___ ___________.
____________ _____ _______ _________ ___ _____ ________ ___ ________ _____________ ________ ____________ _________ _________ ______.
_______ ____________ ___________ ____________ ____ ____ ____ ___ _____ ____ ____.
__ ________ ___ ______ ________ ____________ __________ _________ ___________.
_____________ _____________ __________ _________ ____________ ____ _______ ____ __________ ____ _______ ___________.
__________ ____________ ________ ___________ ________ ___ _____ _____________ _____________.
_____________ _____ ____ _________ _____________ _____ ___.
___ __________ ____ __ ___________ _____________ _____ ______ ___ __________.
__________ _______ ____ _____ ___ __________ __________.
___________ ___________ _____________ ________ ____ _____ _________.
____________ _____________ _____________ ___ __________ _______ ____________ _____________ __ _______ ______ _______.
______ _______ __ ___________ _________ ___ ___ ___ _____ __________ _____________ ______ ________.
___ _____________ __ _____ ____________ __ ________ ____.
__ ___________ ___________ ___ ________ _____ _________ _________ __ ______ ___.
_______ ________ ___ ___________ ____ ________ _____ _____________ _______ __________ __________ ________ ____________ ___.
____ _________ ____ ____ __________ _______ ___ _________ ____ ______ ______ ____ ________ _____ ______.
___________ ____________ _____ _____________ ____ _____________.
___________ ______ ____ ___ _____________ ____.
________ ______ _____________ ____ _____ _____ ____________ ____ ________.
___________ ____ _________ __ ________ _____________.
__________ ____________ _________ _______ __ ________ _____ ________ _____.
______ ____________ ____________ __ ______ __________ ________ _____ ____________ __ _______ ___ ____ _____________.
__ ____ _____________ _____ _____________ ______ ________ ________ ______ ____ _____ _________ _____________ __________ __________.
_______ __________ ____________ ____________ __________ ____ ______ ________ ____ _______ _____________.
__ _________ _______ ____ _____________ _______ ___________.
_____ ___________ ____ _____________ _____________ __ _____ ____________ _____________ _____________ _____ _____________ ___ __________.
_____________ ___ _____________ ____________ ________ ___________ _________.
____ _______ __________ _______ ____ _________ ____.
_______ _______ _________ ______ ______ __ _______ ___ ___ ____.
___ _________ _____ ________ __________ _____________ __________ _____________ ___ __________ __________ _____ ______.
___ ________ _______ ______ ________ __________ ______.
______ ___ __ _________ _________ _____________ _____ _____ _____ ______ _____________ ___________ ________.
___ _____ __________ ____________ ________ _____ ____ ____ __ ____________ __________ ____.
______ __________ _____ _____________ ___ ________ ___________ ______ ___________ ___________ ______ ______ __________ __________.
____ ______ ___________ _____________ _________ __ __________ ___________ __________ ______.
________ _________ _________ ____________ ______ ____.
___ _____ _______ _________ ___ ____ __ _________ __ _____.
___ _________ _______ _____________ _____ __ ________ __________ ___________ ________ ___.
____ ___________ ___ _____________ _____________ ___________ ________ ____________ ____________ _________ ____________ _____________.
_______ ________ ___ ______ _____ ________ _________ ____.
____________ ______ _______ ____ ________ _____________.
_______ _____________ _________ _____ ______ ________ _________ __________ ____ _________ ________ ___.
__________ __________ __________ _________ ___________ _____________ ____ _____.
___ __________ ______ _____ __ ___ _____ ________ ______ ___.
______ ________ ________ ______ ____ _____ _________ ______ _____ _____.
____________ ________ _____________ _______ _________ ____ ______ ______ _______ ____ _____.
___________ _____ ____ __ __________ __________ ___ ___________ ___ ____ __________ ________.
______ ____ _________ __ ____ _____________ ____ _________ ______ __________ ____ ____ _______.
_____________ ___________ _______ ________ ________ _________ _____ _____________.
_____ _____ _______ _________ _____ __ ___.
____________ ___ _________ ___ _________ ____ _____________ ____________ ____ __ _______ ______ _________ _____.
_______ ____________ _____ ___________ __ ____ _____________ _____ __________ ______ ________ __ _______ __.
___________ ________ _______ _____ _______ _____________ ____ __________ _________ _________ ____________.
_________ ____________ ____ ____ ________ __ _______ ________ ____.
____________ ________ ________ ______ ____ ______ ____________ _____ _____________ ___________.
___________.
Click Here to Order Full Assignment on WhatsApp







Degree : PG DIPLOMA PROGRAMMES
Course Name : Post Graduate Diploma in Applied Statistics
Course Code : PGDAST
Subject Name : Industrial Statistics-I
Subject Code : MSTE 1
Year : 2023



IGNOU MSTE 1 Solved Assignment 2023
Click Here to Order on WhatsApp

Related Question


State whether the following statements are True or False. Give reason in support of your answer. 
a) If the average number of defects in an item is 4, the upper control limit of the c-chart will be 12.
b) The specification limits and natural tolerance limits are same in statistical quality control.
c) If the probability of making a decision about acceptance or rejection of a lot on the first sample is 0.80 and the sizes of the first and second samples are 10 and 15, respectively, then
the average sample number for the double sampling plan will be 25.
d) Two independent components of a system are connected in series configuration. If the reliabilities of these components are 0.1 and 0.30, respectively then the reliability of the system will be 0.65.
e) A point in the pictorial representation of a decision tree having states of nature as immediate sub-branches is known as decision point. 

 


State whether the following statements are True or False. Give reason in support of your answer. 
a) If the average number of defects in an item is 4, the upper control limit of the c-chart will be 12.
b) The specification limits and natural tolerance limits are same in statistical quality control.
c) If the probability of making a decision about acceptance or rejection of a lot on the first sample is 0.80 and the sizes of the first and second samples are 10 and 15, respectively, then
the average sample number for the double sampling plan will be 25.
d) Two independent components of a system are connected in series configuration. If the reliabilities of these components are 0.1 and 0.30, respectively then the reliability of the system will be 0.65.
e) A point in the pictorial representation of a decision tree having states of nature as immediate sub-branches is known as decision point. 

 


A small electronic device is designed to emit a timing signal of 200 milliseconds (ms) duration. In the production of this device, 10 subgroups of four units are taken at periodic intervals and tested. The results are shown in the following table: 

Subgroup Number
Subgroup Number Duration of Automatic Signal (in ms)
a b c d
1 195 201 194 201
2 204 190 199 195
3 195 197 205 201
4 211 198 193 180
5 204 193 197 200
6 200 202 195 200
7 196 198 197 196
8 201 197 206 207
9 200 202 204 192
10 203 201 209 192

 i) Estimate the process mean and standard deviation. 
ii) Determine the centre line and control limits for the process mean and process variability.
iii) By plotting the charts on graph paper, determine that the process is stable or not with respect to the process mean and process variability. If necessary, compute revised control limits


The failure density function of a random variable T is given by
f(t) = left{egin{matrix} 0.011e^{-0.01t}, & tgeq 0 \ 0, & otherwise end{matrix}ight.
Calculate, the
i) reliability of the component. 
ii) reliability of the component for a 100 hour mission time. 
iii) mean time to failure (MTTF). 
iv) median of the random variable T. 
v) life of the component, if the reliability of 0.96 is desired. 


To monitor the manufacturing process of mobile phones, a quality controller randomly selected 100 mobile phones from the production line, each day over 15 days. The mobile phones were inspected for defectives and the number of defective mobile phones found each day was recorded. The data are given below:

Subgroup Number Number of Mobile Phones Inspected Number of Defective Mobile Phones
1 100 3
2 100 6
3 100 4
4 100 6
5 100 20
6 100 2
7 100 6
8 100 7
9 100 3
10 100 0
11 100 6
12 100 15
13 100 5
14 100 7
15 100 6

 i) Determine the trial centre line and control limits for the fraction defective using the above data. 

ii) Contract the control chart on graph paper and determine that the process is stable or not. If there is any out-of-control point, determine the revised centre line and control limits.


A shirt manufacturing company supplies shirts in lots of size 250 to the buyer. A single sampling plan with n = 20 and c = 1 is being used for the lot inspection. The company and the buyer decide that AQL = 0.04 and LTPD = 0.10. If there are 15  defective in each lot, compute the
i) probability of accepting the lot. 
ii) producer’s risk and consumer’s risk. 
iii) average outgoing quality (AOQ), if the rejected lots are screened and all defective shirts
are replaced by non-defectives. 
iv) average total inspection (ATI). 


The failure data of 10 electronic components are shown in the table given below:

Failure Number 1 2 3 4 5 6 7 8 9 10
Operating Time (in hours) 3 5 31 51 76 116 140 182 250 302

Estimate, the
i) reliability. 
ii) cumulative failure distribution.
iii) failure density. 
iv) failure rate functions.

Call Now
Contact Us
Welcome to IGNOU Academy

Click to Contact Us

Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088
New to IGNOU Login to Get Every Update