outp

My Cart

A shirt manufacturing company supplies shirts in lots of size 250 to t

Question


A shirt manufacturing company supplies shirts in lots of size 250 to the buyer. A single sampling plan with n = 20 and c = 1 is being used for the lot inspection. The company and the buyer decide that AQL = 0.04 and LTPD = 0.10. If there are 15  defective in each lot, compute the
i) probability of accepting the lot. 
ii) producer’s risk and consumer’s risk. 
iii) average outgoing quality (AOQ), if the rejected lots are screened and all defective shirts
are replaced by non-defectives. 
iv) average total inspection (ATI). 


Posted on : 2023-02-14 13:08:12 | Author : IGNOU Academy | View : 39

Click Here to Order on WhatsApp

Login or SignUp to View Answer / Comment or Ask Question.. Its Free

Word Count : 536

We can use the binomial distribution to calculate the probabilities and risks associated with this sampling plan.

Given:

Lot size = 250
Sample size = 20
Acceptable Quality Level (AQL) = 0.04
Limiting Quality Level (LTPD) = 0.10
Defective items in the lot = 15
i) Probability of accepting the lot:

The lot will be accepted if the number of defects in the sample is less than or equal to the acceptance number, which is c = 1 in this case. We can use _______ _____________ _______ _____ ____________ _____.
____ _____________ _____ _____ ________ ___ __________ ___________ __ _____________ _________ _____________ ________ ______.
____________ ___________ ____ ____________ ___ ____________ ___ ______.
___ _____ ____________ ______ __________ __ _________ ______ ____________ _______ ________ __.
__ ________ _____ _____ ____________ ____.
__________ __ ____ _____________ _______ _______.
__________ ________ ____________ ___________ ____________ ____ _______ _______ ___ _____ ______.
____________ ___________ ________ ___ ____________ ________ ________.
________ ________ _______ ___________ __________ __ ________ __________ ___________.
___________ _______ ______ __ ___________ ____.
_______ ___ __________ __________ ___________ ____________ ____ ___ ____ __ ____________ _______ ____________.
_____ ________ ___ __________ _______ __________ _________.
____________ ___________ _____ ___________ ___ _____________ ____ _____ _______ ____________ ____________ __________.
_____ __________ ____ _____ __ __ _____________ __________ __ ____________ ____________ ___________ __________ ____.
______ __ _____ ____________ ______ ____ __ ___________ ____________ __ ___________ ______.
___________ ________ _____ ______ ________ _____ ___.
____ __ ___ ________ ____ ___ ________ __ ____________ ___________ __.
_______ ____________ ______ _____ ___________ __________.
__ _________ _________ _________ __________ __ ______ _____________.
_____ _____ _________ ___ _____________ ________ __________.
___ ___________ __________ ____ ___ __________ ___________.
_____________ __________ ____________ ____________ _______ _____ ___ _____________ ________ __ _______ ______ ___________ __ _______.
_________ _________ _____ _____ _______ __________ __________ _____________ ____________ ______ ____ ____ ____.
___ ___________ _____________ _______ _____ _____.
____________ ___ ___________ ______ ____ _____________ __ ___ _____________ ________ ____ ______.
__________ ____________ ______ __________ ________ __ _______.
______ __________ __ _____ ____________ ________ __ ___________ _____.
_____________ _______ ___ ____________ ________ ___ ____________.
_____ _____________ ______ _____ _____ ____________ __ _____________.
_______ __ __________ ___________ __________ _____________ _____________ __ _________ ___________ ___________ _____ ____________ ____ ____.
______ _____ ____ __________ __ _________ _____________ __ ____________ _______ ______ ___________ ________.
_____________ ___ ______ ________ _________ _____ ____ ____________ ________ _____ __________ _________ _____________ ________.
_______ _______ ___ ____________ __ ___________ ________ __ ___ __ ________ ____________ _____.
________ ______ _____________ _____ ______ ____ ___________ ______ ______.
_______ ______ ___ _________ ___________ ____________ __________ ________ ______ ____________ _________ __________ _________.
______ __________ _____________ ______ _____________ ____ _________.
____________ _____ __ ___________ ________ _____________ ____________ _____________ ______ ______ ___.
________ _____________ ______ ___________ ________ _________ ___ ___ __ ____________ __________.
_____________ __ ___________ ____ _____ ____________ __________.
____________ __________ _____________ ___ _____________ ___ _______ ___ _____________ _________ _____ _______.
______ ______ _____ ___________ ____________ ________ _____________ ____ ____________ ____________.
________ ___________ ____________ ____________ _____ _________ ________ ___ __ ________ ________ ___ ________ _____ __.
______ _____________ _____ _____ ________ _______ ___ ____ ________ __________ _____________ _______.
____________ _________ ___________ _____________ ____ _____ ___________ _____________ ___ _______ ____________ ______.
_____________ __________ _____________ _______ _______ ____ __________.
Click Here to Order Full Assignment on WhatsApp








Degree : PG DIPLOMA PROGRAMMES
Course Name : Post Graduate Diploma in Applied Statistics
Course Code : PGDAST
Subject Name : Industrial Statistics-I
Subject Code : MSTE 1
Year : 2023



IGNOU MSTE 1 Solved Assignment 2023
Click Here to Order on WhatsApp

Related Question


The failure density function of a random variable T is given by
f(t) = left{egin{matrix} 0.011e^{-0.01t}, & tgeq 0 \ 0, & otherwise end{matrix}ight.
Calculate, the
i) reliability of the component. 
ii) reliability of the component for a 100 hour mission time. 
iii) mean time to failure (MTTF). 
iv) median of the random variable T. 
v) life of the component, if the reliability of 0.96 is desired. 


The failure data of 10 electronic components are shown in the table given below:

Failure Number 1 2 3 4 5 6 7 8 9 10
Operating Time (in hours) 3 5 31 51 76 116 140 182 250 302

Estimate, the
i) reliability. 
ii) cumulative failure distribution.
iii) failure density. 
iv) failure rate functions.


A shirt manufacturing company supplies shirts in lots of size 250 to the buyer. A single sampling plan with n = 20 and c = 1 is being used for the lot inspection. The company and the buyer decide that AQL = 0.04 and LTPD = 0.10. If there are 15  defective in each lot, compute the
i) probability of accepting the lot. 
ii) producer’s risk and consumer’s risk. 
iii) average outgoing quality (AOQ), if the rejected lots are screened and all defective shirts
are replaced by non-defectives. 
iv) average total inspection (ATI). 


The system shown below is made up of ten components. Components 3, 4 and 5 are not identical and at least one component of this group must be available for system success. Components 8, 9 and 10 are identical and for this particular group it is necessary that two out of the three components functions

What is the system reliability if R1 = R 3 = R 5 = R 7 = R 9 = 0.85 and
R 2 = R 4 = R 6 = R 8 = R10 = 0.95

State whether the following statements are True or False. Give reason in support of your answer. 
a) If the average number of defects in an item is 4, the upper control limit of the c-chart will be 12.
b) The specification limits and natural tolerance limits are same in statistical quality control.
c) If the probability of making a decision about acceptance or rejection of a lot on the first sample is 0.80 and the sizes of the first and second samples are 10 and 15, respectively, then
the average sample number for the double sampling plan will be 25.
d) Two independent components of a system are connected in series configuration. If the reliabilities of these components are 0.1 and 0.30, respectively then the reliability of the system will be 0.65.
e) A point in the pictorial representation of a decision tree having states of nature as immediate sub-branches is known as decision point. 

 


A small electronic device is designed to emit a timing signal of 200 milliseconds (ms) duration. In the production of this device, 10 subgroups of four units are taken at periodic intervals and tested. The results are shown in the following table: 

Subgroup Number Duration of Automatic Signal (in ms)
a b c d
1 195 201 194 201
2 204 190 199 195
3 195 197 205 201
4 211 198 193 180
5 204 193 197 200
6 200 202 195 200
7 196 198 197 196
8 201 197 206 207
9 200 202 204 192
10 203 201 209 192

 i) Estimate the process mean and standard deviation. 
ii) Determine the centre line and control limits for the process mean and process variability.
iii) By plotting the charts on graph paper, determine that the process is stable or not with respect to the process mean and process variability. If necessary, compute revised control limits


To monitor the manufacturing process of mobile phones, a quality controller randomly selected 100 mobile phones from the production line, each day over 15 days. The mobile phones were inspected for defectives and the number of defective mobile phones found each day was recorded. The data are given below:

Subgroup Number Number of Mobile Phones Inspected Number of Defective Mobile Phones
1 100 3
2 100 6
3 100 4
4 100 6
5 100 20
6 100 2
7 100 6
8 100 7
9 100 3
10 100 0
11 100 6
12 100 15
13 100 5
14 100 7
15 100 6

 i) Determine the trial centre line and control limits for the fraction defective using the above data. 

ii) Contract the control chart on graph paper and determine that the process is stable or not. If there is any out-of-control point, determine the revised centre line and control limits.

Call Now
Contact Us
Welcome to IGNOU Academy

Click to Contact Us

Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088
New to IGNOU Login to Get Every Update