outp

My Cart

The failure data of 10 electronic components are shown in the table gi

Question


The failure data of 10 electronic components are shown in the table given below:

Failure Number 1 2 3 4 5 6 7 8 9 10
Operating Time (in hours) 3 5 31 51 76 116 140 182 250 302

Estimate, the
i) reliability. 
ii) cumulative failure distribution.
iii) failure density. 
iv) failure rate functions.


Posted on : 2023-02-14 13:29:32 | Author : IGNOU Academy | View : 195

Click Here to Order on WhatsApp

Login or SignUp to View Answer / Comment or Ask Question.. Its Free

Word Count : 878

To estimate the reliability, we can use the following formula: R(t) = exp(-λt) where R(t) is the reliability at time t, and λ is the failure rate. To estimate λ, we can use the following formula: λ = (n - 1) / Σ(ti - ti-1) where n is the number of failures, ti is the operating time of the i-th failure, and ti-1 is the operating time of the (i-1)-th failure.

Using the given data, we can compute the values as follows:

i ti ti-1 ti - ti-1 λ R(t)
1 3 0 3 0.003333 0.996675
2 5 3 2 0.003333 0.993362
3 31 5 26 0.001089 0.987318
4 51 31 20 0.001089 0.981311
5 76 51 25 0.001089 0.975331
6 116 76 40 0.000696 0.969377
7 140 116 24 0.000696 0.963450
8 182 140 42 0.000696 0.957550
9 250 182 68 0.000392 0.951678
10 302 250 52 0.000392 0.945832

(i) The estimated reliability values are shown in the above table under the column labeled "R(t)".

(ii) The cumulative failure distribution can be estimated as follows: F(t) = 1 - R(t) The estimated cumulative failure distribution values are shown in the table below:

i t F(t)
1 3 0.003325
2 5 0.006638
3 31 0.012682
4 51 0.018689
5 76 0.024669
6 116 0.030623
7 140 0.036550
8 182 0.042450
9 250 0.048322
10 302 0.054168

(iii) The failure density can be estimated by differentiating the ___ ____ ____________ _______ ____________ ____ ___ _____ _____ ___________.
_______ ____ __ _________ ___________ _______ ____________.
_____ _____________ ___________ ____________ ___________ _________ _______ ___ __________ ____________ ________.
___________ ______ ____ ______ ________ ____ _____________ __ ____________ _________ ________ _________ _____________.
_____ ___ _______ ______ ___ _________ __ ____ ___.
_____ ___ ____ _________ ___________ _______ ___________ ___ ____________ __________ __________ ________ _____________ ____________.
____ __________ ____ __________ _____ ________ __ _________ ________ _____________ _____________ _________ ___________.
______ _______ _________ _____________ ____ ___________ _____.
__ __________ ___________ _____________ _____________ ______ ____________ _______ __ _________.
__________ ____ __ _________ _____________ _____________.
__________ ____________ ____ __________ _________ ___.
___ ________ _____ ___________ ___ ________ __________ __ ________ _____ _____________ _____ ___________.
_____________ ______ ___________ ____ __ ________ _______.
______ _______ ______ _______ ________ ________ ___________ ___ _____ ______ ____ __.
_____________ ___ __________ _____ ________ _________ ___________ ____ _______ _____________ __.
__________ ____________ ________ _______ _______ ________ _________ ____.
____________ __ _________ ____ _________ _____ __ _________ _____________.
______ ____ ______ ___________ _______ ___ _______ ___ _________.
________ ___ _________ ____________ ____________ _________ ____ __________ ____________ _________ _____ _____ _____ _______ __.
_______ __________ ____________ ___________ ________ ____________ __________ _______ ____ ________ ____________ __________.
__________ ____ __________ _________ __________ _____ _______ ____ _____ ___ _________ __.
_____ ______ _____ ____ ____ ________ _______ ________ ___________ ______ ___________.
________ ______ _________ ____________ ________ _____ _________.
________ _______ __ ___ ___________ __ ___________ ___________ _________.
____________ ___________ ___ _____ ____________ ___________ ____________ _____________ __________ ____________ ____________ __________.
____ ___ __ __ ___________ ____ _____ ________ _____________ _________ ____ _______ ______ _____________ ____________.
________ ______ ___________ ___ __ ___ _____________ _________ _________ ____________ __________ ___.
_________ ____________ ___ __________ ________ __________ ____ ______.
___ ____ ___ ____ _____________ _______ _________ _____________ ____________ ___ _________.
___________ ________ ___ __________ ___________ _________ ________ __ _________ ______ _____ _____________ _______.
___ ___________ ________ _______ _____________ __________ __ _____________ ________.
___________ ____________ ____________ ___ __________ __________ _____________.
_______ ___ ___________ __ ___________ _____ ______ ___ _________ ______ ________ ________.
__________ _______ _____ ___________ _________ ________ _________ __.
_____________ __ ___ _____________ ______ ___________ ________ ____ __ ____ __________ ______ ____.
__________ __________ ________ ___________ _____________ ____________ _________.
________ ____________ __________ _____________ _________ ____.
____ _____ ________ ____________ _______ ____ ______ _________ ______ ____ __________ _________ ____.
___________ ___________ ____________ ___ ___________ ___ __________ ____________ _____ ______.
_____ ______ ___________ ______ ________ ___ __________ __ __________ ______ _____ ________.
______ _________ _____________ _____________ ___ _____ ____ __________ _____________.
______ __________ ____ ______ _____________ ________ ________ ___________ __ ____________ ______ ________.
________ ___________ _____________ _____ _________ ____ ____ ________ __________ ________ ____________ __ ____________.
__ _____________ ____________ ____________ _______ ___ ______ _________ ____ __________ _______ _____ _____ ________ __.
_____________ __ __ ___________ _________ ________.
____________ _________ ____ ________ __________ ________ __________ ________ ____ ___ ____ ______.
__________ _______ ____________ _____________ ___ __ ____ _____________ ___________ _____________ ________ ________ ___________.
___ ______ ___ ____________ _______ __ __ _____ ____________ __________.
_________ ___ _____ _______ ____ ________ _____________ _______ ___________ ___________ ___________ ____________.
_____ ______ _____ ____ ______ __ __________.
_______ _______ ___ ________ __________ ____________ ____ ______.
__________ _______ __________ _______ __ _________ _____ ___ _____________ __.
________ __________ _____________ ______ ________ __ ___ ____________ __________.
___ ______ __________ ________ ___________ _____________ ____________ __ ___________ __________ ________ _____ ___________.
________ _____________ _____________ _____ _______ _____________ _________ __.
______ _______ ___________ ____ _________ ____ ________ _________ __________ __________ __________ _________ _____.
____ ____ _____________ ______ ______ _________ ___________.
Click Here to Order Full Assignment on WhatsApp








Degree : PG DIPLOMA PROGRAMMES
Course Name : Post Graduate Diploma in Applied Statistics
Course Code : PGDAST
Subject Name : Industrial Statistics-I
Subject Code : MSTE 1
Year : 2023



IGNOU MSTE 1 Solved Assignment 2023
Click Here to Order on WhatsApp

Related Question


A shirt manufacturing company supplies shirts in lots of size 250 to the buyer. A single sampling plan with n = 20 and c = 1 is being used for the lot inspection. The company and the buyer decide that AQL = 0.04 and LTPD = 0.10. If there are 15  defective in each lot, compute the
i) probability of accepting the lot. 
ii) producer’s risk and consumer’s risk. 
iii) average outgoing quality (AOQ), if the rejected lots are screened and all defective shirts
are replaced by non-defectives. 
iv) average total inspection (ATI). 


To monitor the manufacturing process of mobile phones, a quality controller randomly selected 100 mobile phones from the production line, each day over 15 days. The mobile phones were inspected for defectives and the number of defective mobile phones found each day was recorded. The data are given below:

Subgroup Number Number of Mobile Phones Inspected Number of Defective Mobile Phones
1 100 3
2 100 6
3 100 4
4 100 6
5 100 20
6 100 2
7 100 6
8 100 7
9 100 3
10 100 0
11 100 6
12 100 15
13 100 5
14 100 7
15 100 6

 i) Determine the trial centre line and control limits for the fraction defective using the above data. 

ii) Contract the control chart on graph paper and determine that the process is stable or not. If there is any out-of-control point, determine the revised centre line and control limits.


A small electronic device is designed to emit a timing signal of 200 milliseconds (ms) duration. In the production of this device, 10 subgroups of four units are taken at periodic intervals and tested. The results are shown in the following table: 

Subgroup Number Duration of Automatic Signal (in ms)
a b c d
1 195 201 194 201
2 204 190 199 195
3 195 197 205 201
4 211 198 193 180
5 204 193 197 200
6 200 202 195 200
7 196 198 197 196
8 201 197 206 207
9 200 202 204 192
10 203 201 209 192

 i) Estimate the process mean and standard deviation. 
ii) Determine the centre line and control limits for the process mean and process variability.
iii) By plotting the charts on graph paper, determine that the process is stable or not with respect to the process mean and process variability. If necessary, compute revised control limits


The failure data of 10 electronic components are shown in the table given below:

Failure Number 1 2 3 4 5 6 7 8 9 10
Operating Time (in hours) 3 5 31 51 76 116 140 182 250 302

Estimate, the
i) reliability. 
ii) cumulative failure distribution.
iii) failure density. 
iv) failure rate functions.


The system shown below is made up of ten components. Components 3, 4 and 5 are not identical and at least one component of this group must be available for system success. Components 8, 9 and 10 are identical and for this particular group it is necessary that two out of the three components functions

What is the system reliability if R1 = R 3 = R 5 = R 7 = R 9 = 0.85 and
R 2 = R 4 = R 6 = R 8 = R10 = 0.95

State whether the following statements are True or False. Give reason in support of your answer. 
a) If the average number of defects in an item is 4, the upper control limit of the c-chart will be 12.
b) The specification limits and natural tolerance limits are same in statistical quality control.
c) If the probability of making a decision about acceptance or rejection of a lot on the first sample is 0.80 and the sizes of the first and second samples are 10 and 15, respectively, then
the average sample number for the double sampling plan will be 25.
d) Two independent components of a system are connected in series configuration. If the reliabilities of these components are 0.1 and 0.30, respectively then the reliability of the system will be 0.65.
e) A point in the pictorial representation of a decision tree having states of nature as immediate sub-branches is known as decision point. 

 


Solve the two-person zero-sum game having the following payoff matrix for player A

  Player B
B1 B2 B3 B4 B5
Player A A1 3 4 5 –2 3
A2 1 6 –3 3 7
Call Now
Contact Us
Welcome to IGNOU Academy

Click to Contact Us

Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088
New to IGNOU Login to Get Every Update