outp

My Cart

Solve the following LPP by simplex method:MaxSubject to 3x1

Question


Solve the following LPP by simplex method:

Max 9x_{1} +7x_{2} +7x_{3}

Subject to   3x1+ x_{2} +2x_{3} leq 12

                    x_{1},5 x_{2}, +3x_{3} leq 30

                     x_{1}, x_{2}, x_{3} geq 0.


Posted on : 2023-03-18 16:43:14 | Author : IGNOU Academy | View : 28

Click Here to Order on WhatsApp

Login or SignUp to View Answer / Comment or Ask Question.. Its Free

Word Count : 536

To solve the given linear programming problem using the simplex method, we first convert it into its standard form by introducing slack variables as follows:

Maximize z = 9x1 + 7x2 + 7x3

Subject to:

3x1 + x2 + 2x3 + x4 = 12

x1 + 5x2 + 3x3 + x5 = 30

x1, x2, x3, x4, x5 ≥ 0

We can now represent this problem in a tableau format as follows:

Basis x1 x2 x3 x4 x5 RHS
x4 3 1 2 1 0 12
x5 1 5 3 0 1 30
z -9 -7 -7 0 0 0

We begin by selecting the most negative coefficient in the bottom row, which is -9 in this case, corresponding to _________ ____ _____ ______ _____ __________.
__ _______ _____________ ____________ _____________ __ ____________ ___ ___ __ _____ __________ _____.
______ ________ ___ _______ ___________ _______ ________ _____________ _____________ ___.
__ _________ ______ ___________ ___________ _________ __ _____ _________ ________ ______ _______ ____ ________.
______ __ ________ _____________ _________ _______ ____________ ________ ____________ _________ ____ _________ _____ ___ ____________.
___________ ________ ________ ________ ______ __________ ____ __ __________ _____ ____________.
__________ ___ ___ _____________ ___________ ________ _____ ___________ __ _____ __ ______ ________ _____.
_______ ______ ____________ ___ ___________ ___ ______ _____ ___________ ______ _____________ ____________.
____ _____________ _____ _____________ _________ __ _____ _____ __________ ____________ _________ _____.
___ ___ _____ _______ _____ ____________ ________ ____________ ___ ____ __________ ______ ___.
____ _________ ______ ___ _____ ______ ___________ ___________ ____ ____________ ___________ __________ _____.
___________ _________ _________ ____________ _______ ________ _____ __ ________ ________.
_____ _____________ _______ __________ ______ _______ _______ _________ ______ __________ ____________ __ __ ____________ ____.
_______ _____ ____________ ______ ___ _____ ______ ____ _________ __ _____________.
____ ____ ___________ __ ________ ___________ ________ ________.
__ ______ _____________ _______ __ ____________ ______ ____.
__ ______ ___________ ___ _____ __________ _____ _______ ___ _________ ________ __ ___________ _______.
____ ___________ __ __ ____________ ______ ________ _____ _______ ___ _____ ___ ____________.
__ ___ __ _____ _________ ____ ____________ ____ ___________ ________.
___ ___________ _____________ ______ ____________ __________ __________ _______ ___ _____________ ___________ ________ ____ __________ ___.
_____________ _____________ _________ _____ ____________ ___________ ________ ___ _______ _________.
_____________ __________ ___________ _________ __________ __ _____________ ___________ ____________ _______ ____________.
_________ ___ ___ ________ ____________ _____ ________ ___.
_______ ________ _____________ __________ ________ __________ _____ ____________ _____________ __ __________.
____________ _________ ______ ______ _____ __________ ____ ______ _____ ______ ______ ___.
_______ _______ ___ ______ ____________ ____ _______ ___________ ___ ________ __________ ________ _________.
_________ ___ _____________ __________ ______ ___________ ______.
__________ _______ ____ _____ ___________ _____ ______ _____ ________ ______ __________ __________ ___________ ________ ____________.
___ _______ __________ _____________ _______ ____________ ___________ ____ ____________ _____ ____.
_____ __ ___ ______ ___ __ _____ _________.
______ ______ ________ _____ _______ ___ ____________ _____ ____________ _________ _________ ____ ___ _______.
___ _______ ________ _______ _______ ______ _______.
____________ _________ ____________ _________ ___________ _______ ______.
______ __________ __________ ___ _________ ___ _____ _______ ___________ ____________ _______ ___________ ____ ___.
_____ _______ _____ ___________ _________ ___.
__ ________ ____ _________ _______ _____ __ _____________ _____ ________.
__________.
Click Here to Order Full Assignment on WhatsApp








Degree : CERTIFICATE PROGRAMMES
Course Name : Advanced Certificate in Power Distribution Management
Course Code : ACPDM
Subject Name : Management Of Power Distribution
Subject Code : BEE 3
Year : 2023



IGNOU BEE 3 Solved Assignment 2023
Click Here to Order on WhatsApp

Related Question


In your opinion, what should the role of a change leader be in facilitating the changes being brought about due to the power distribution reforms? 


An LPP with 4 variables and3 constraints can have a maximum of 4 basic solutions. 


What is performance Management System? Give examples. 


A fertilizer company distributes its products by trucks loaded at its only loading
station. Both, company trucks and contractor’s trucks are used for this purpose. It
was found out that on an average every 5 minutes one truck arrived and the average
loading time was 3 minutes. 40 percent of the trucks belong to the contractors.
Making suitable assumptions, determine:
 i) The probability that a truck has to wait.
 ii) The waiting time of a truck that waits.
 iii) The expected waiting time of contractor’s trucks per day. 


The final table in Phase I of a Linear Programming Problem is given below:

C_{B}

     Basic

    Variables

 0          0          0           0             -1 

 x_{1}       x_{2}        s_{1}         s_{2}          x_{a_{1}}

    Sol.
0        x_{2}

1         1           1      0           0   

-1         0        -1       -1          1

     5
-1         x_{a_{1}}      3
    -1         0        -1       -1           0      -3

Here 1a x is the artificial variable. Does this LPP have a feasible solution? Justify your answer.


What is meant by ‘Operating Leverage’ and ‘Financial Leverage’?


For a (M/M/1) queueing model  lambda = 2,: mu = 3, steady state solution exists. 

Call Now
Contact Us
Welcome to IGNOU Academy

Click to Contact Us

Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088
New to IGNOU Login to Get Every Update