Question
Show that the map 3 T : R3→ R2 given by ) T(x1 , x 2, x3 ) =(x1,+x2,+x3 is an open map
To show that the linear transformation \( T: \mathbb{R}^3 \to \mathbb{R}^2 \) given by \( T(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \) is an open map, we need to demonstrate that it maps open sets in \( \mathbb{R}^3 \) to open sets in \( \mathbb{R}^2 \).
Let __ _____________ _____________ ____________ _______ ____ __ ________ _____ _____________ ____ ________ ______ _____________.
____ ___ _____________ _______ ____________ _________.
___________ ______ __ __________ _____________ _____ _________.
______ ________ ___________ _____ _____ _______ _________ ________ __________ _____ ___ ___________.
______ ________ ____________ __ ________ ____________ __ ________ ________ ________ _________ ___________.
_________ __ ______ __________ _______ ________ ____________ ____ _________ __.
__ _______ _____ _______ ________ _______ _______ __ ________ ____ ____________ _____________ _________ ___.
____________ _________ __________ ___ ___ __________ ____________ ____ ___ ___.
_______ ____________ ________ ____ __________ ____.
____________ ____ ______ _____ ______ __________ __________ _____________ _________ ____________ _______ _________.
________ _________ ___________ _____________ _____ _____ _______.
__ ___ ____ ____ ___________ _________ ____.
__ ______ _________ _____ _______ __ ___________.
___________ _______ _______ ______ ______ ___ ___________ _____ __________ ___________ ____________ ___.
____________ __________ __________ _____________ ___ _____ _____ _______.
_______ _________ _______ _________ __ _________ __________.
Click Here to Order Full Assignment on WhatsApp
Characterise all bounded linear functionals on a Hilbert space.
Define Eigen Spectrum of a bounded linear operator on a Banach space. Show that the eigen spectrum of the operator T on l2 given by ) (T ,......... ) =
is empty .
Let X and Y be Banach spaces and :F X → Y be a linear map which is continuous and open. Will F always be closed? Will F be always surjective? Give reasons for your answer.
The image of a Cauchy sequence under a bounded linear map is also a Couchy sequence.
Let X be a vector space. Let be two norms on .X When are these norms said to be equivalent? Justify your answer.
Let . X = For x=(x1,x2,x3)
Let
Show that and
are equivalent.
Check whether the identity map on an infinite dimensional space is compact.
Let A be an operator on a Hilbert space .H Show if Ax A x ∗ = for every ,H x ∈ then A is normal. Is it converse true? Justify
Click to Contact Us
Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088