Question
Define Eigen Spectrum of a bounded linear operator on a Banach space. Show that the eigen spectrum of the operator T on l2 given by ) (T ,......... ) =
is empty .
The eigen spectrum of a bounded linear operator on a Banach space is a set of complex numbers consisting of all possible eigenvalues of the operator, each with its associated algebraic and geometric multiplicities. The eigenvalues represent scalar values λ such that __________ ______ ____ _____ ____ _____________ ______ __ __ __________.
_______ ______ __ _____________ ____________ ___ ________ ______ _______ ____________ _______ _____.
______ ____________ ___________ ___ ____ __ __________ _____ _____.
_____ _____________ _____________ ______ ______ ___ _________ ____________ _____ _____ ___ __________.
_________ ____________ __ ___________ ___ ___________ _________ ___ _____ ____ ______ _____.
____________ __________ __________ ____________ ___________ _____ ________ ___ _________ ___________ _____.
_____________ _______ ____________ ______ ___________ ____________ ____________.
_____ ____________ _____________ _________ ____ _______ ___________ _______ _______.
____________ ___________ _________ __________ __ ___ ___.
_______ _________ ____________ __ ___________ _____ _____ ____________ __________ ______ _________ _____________ ________ __ ______.
_________ ________ __________ ___________ ______ ______ _______ _________ ___ __________.
______ ______ ____________ __________ _______ __________ _________ _____ _____ ____ __.
______ ____________ ___________ _______ ____________ ____ ______ ____ _______ _____________ ___________ _____________ ___________ __ ___________.
________ __ _____________ _______ ____________ ______ ________ _____________.
_____________ _____ ______ _________ _____ ___________.
________ _______ ______ ______ __ __________ _____________ __________ ______ ________ ____.
________ __ _________ __ ___ _______ __ _____ _________.
____ ______ ______ _____________ _________ __ ______ __________ ______.
_________ ______ _________ ___ ___ _____________ _______ ________ __ ________ ____ ___________ _________ __ _____________.
______ __ _________ ___ ___________ __________ ______ ______ _______.
_____________ __ ____ _________ ___ _____________ __________.
________.
Click Here to Order Full Assignment on WhatsApp
Let X be a vector space. Let be two norms on .X When are these norms said to be equivalent? Justify your answer.
Let . X = For x=(x1,x2,x3)
Let
Show that and
are equivalent.
Let ]1,0[C X = with Sup norm defined by f = Sup{| )x(f |}. ]1
Let ]1,0[ X = C′ and ] Y = 11,0[C and let T : X → Y be the linear operator from X to Y given by ,f )f(T = ′ the derivative of f on ].1,0[ Show that T is not continuous.
Any non zero bounded linear functional on a Banach space is an open map.
Let H be a Hilbert space. For any subset A of ,H define . A ⊥ If ,H A ⊆ B ⊆ then show that:
i) B1⊆ A
ii) A ⊆ A ⊥⊥
State conditions on A⊥⊥ =A
Are Hahn-Banach extensions always unique? Justify.
Check whether a finite dimensional normed linear space is reflexive? Justify your answer.
Click to Contact Us
Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088