Question
Characterise all bounded linear functionals on a Hilbert space.
Bounded linear functionals on a Hilbert space play a crucial role in functional analysis, providing a powerful framework for understanding the properties of the space and its elements. Let \(H\) be a Hilbert space over the field of complex numbers \(\mathbb{C}\).
A bounded linear functional on a Hilbert space \(H\) _____________ ___ _____________ ___ ___________ _____________ ________ ____________ _____ _______ ______.
_________ _______ ____________ _________ ______ ______.
_______ _________ __ ___ ___ _____________ _____________ ____ ___________.
____ _____ _____________ ____ ___________ ________ _________ _____ ______ _______ ______ __ _________ __.
_________ _____ _____ ____________ _____ ___________ __ __ __________ ___ _____ __________ ___ ______.
_____________ ____________ ___________ _________ _______ ___ _________ __ ___ __________ ___________ ___ ___________.
____________ ___________ ____ ______ _____ _____.
___ _________ __ ____ _____ ____________ ____________ ____ _____________.
_____________ _______ ____________ ____________ ________ __ ____ __ _________ ___________ ____________ _______ ______.
_____ ____ ____________ ___________ _____________ _________ ______ _____.
________ _____ ___________ __ ______ _______ ____________ ________ _____ ___ _________ ___.
___ _____________ _____ __ ____ _______ ___________ ___________ _____ ___ __________ ___________ ______ __________.
__ _____________ __________ ____ ____________ __ ____________ _________ ___ ___ ___ ___ _________ _________.
____ ______ _____________ _____________ ____________ __ ______ _________ ___ __________ ________ _______.
__ __ _________ ____ ___ __ _____________ ___ ___.
___ __ ___ __________ _______ ____ __________ ______ __________ ____ ____________ __________ ____________ ____________.
_______ _____ ____________ _____ _______ ___ ________ _____ __ _____ ___ ___.
_______ ________ _______ _________ __ ____ ___________ __________ ___________ ___________.
_____________ _______.
Click Here to Order Full Assignment on WhatsApp
The image of a Cauchy sequence under a bounded linear map is also a Couchy sequence.
Define Eigen Spectrum of a bounded linear operator on a Banach space. Show that the eigen spectrum of the operator T on l2 given by ) (T ,......... ) =
is empty .
Let A be an operator on a Hilbert space .H Show if Ax A x ∗ = for every ,H x ∈ then A is normal. Is it converse true? Justify
Check whether the identity map on an infinite dimensional space is compact.
Let X and Y be Banach spaces and :F X → Y be a linear map which is continuous and open. Will F always be closed? Will F be always surjective? Give reasons for your answer.
Let be a norm on a linear space .X if X ,x y∈ and
then show that
for all .0 s ≥ t,0 ≥ .
In a Hilbert space. Prove that x n → x provided
Click to Contact Us
Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088