outp

My Cart

An experiment was conducted to compare two metals: A and B, as bonding

Question


An experiment was conducted to compare two metals: A and B, as bonding agents for an alloy material. Components of the alloy were bonded using the metals as bonding agents, and the pressures required to break the bonds were measured. The data for the pressures required for breaking the metal are given in the following table:

S. No. Breaking Pressure S. No. Breaking Pressure
Metal A Metal B Metal A Metal B
1 71.9 72.2 21 86.5 70.6
2 68.8 66.4 22 74.3 74.6
3 82.6 74.5 23 71.2 68.8
4 78.1 60.6 24 85 76.9
5 74.2 73.2 25 80.5 63
6 70.8 68.7 26 76.6 75.6
7 84.9 69 27 73.2 71.1
8 72.7 73 28 87.3 71.4
9 69.6 67.2 29 75.1 75.4
10 83.4 75.3 30 72 69.6
11 78.9 61.4 31 85.8 77.3
12 75 74 32 81.3 63.4
13 71.6 69.5 33 77.4 76
14 85.7 69.8 34 74 71.5
15 73.5 73.8 35 88.1 71.8
16 70.4 68 36 75.9 75.8
17 84.2 76.1 37 72.8 70
18 79.7 62.2 38 86.6 77.7
19 75.8 74.8 39 82.1 63.8
20 72.4 70.3 40 78.2 76.4

 If the pressure required to break both metals are normally distributed, then answers the following questions:
i) Are the variances of the distributions of the pressure of Metals A and B equal at 5% level of significance?
ii) If yes, check whether the average pressure for Metal A is more than the Metal B at 5% level of significance? 

 


Posted on : 2023-03-23 10:10:23 | Author : IGNOU Academy | View : 70

Click Here to Order on WhatsApp

Login or SignUp to View Answer / Comment or Ask Question.. Its Free

Word Count : 556

To compare the variances of the distributions of the pressure of Metals A and B, we can use the F-test at a 5% level of significance. The null hypothesis is that the variances are equal, and the alternative hypothesis is that they are not equal.

i) F-test for equality of variances:

The F-statistic is calculated as the ratio of the variances of the two samples:

F = s1^2 / s2^2

Where s1^2 and s2^2 are the sample variances for Metal A and Metal B, respectively.

Using the data provided, we get:

Sample size for Metal A (n1) = 20
Sample size for Metal B (n2) = 20
Sample variance for Metal A (s1^2) = 44.66
Sample variance for Metal B (s2^2) = 41.87

Hence, F = s1^2 / s2^2 = 44.66 / 41.87 = 1.066

Using an F-distribution table at a 5% level of significance and degrees of freedom (df) = (n1-1, n2-1) = (19,19), the critical value for F is 2.18 (upper tail).

____ _____ ____ __ _______ ____________.
__________ ____ _________ ___________ ___ ____________ ____________ ______ _____ ____________ _____ __.
____ __________ ____________ _____________ __________ __ ___ _____________ _____ ________ ______.
_____________ __ _____ ________ _____ ________ ________ _________ ____ _________ _____________ _____ ______ ____________.
__________ _______ _______ ________ __ _____________ ____ ________ ________ _____ ____ _____________ __.
___ ____ __ ___ ______ ______ _________ __________ _________ _____________ _____ ____ ____.
__ ________ __ _______ ________ _____________ _____________ ____ _______ ___ _______ ____ ____________ _____.
____________ _____________ ___ ___ ________ ________ ___________ _____ _____________ ____________ __ ___ __________ _____________ ____.
____________ ______ ___ ___________ _______ ___ ________ _______ __.
________ _________ ______ ____ __________ __ _______ _________ __ ____ ___________ ___.
_____ ______ ____ __ __ __________ ___________ ____ _____ ____________ __ ____ _________ ___ __.
__ _____ __________ _____ ________ _________ ____ _____________ ______.
_______ _______ ___ ___________ ___ ___ ______ _____________ ______ ___________ _________ __________ __.
_________ ___________ ___ ______ ___________ _________ ___________.
______ ___________ ______ ________ _________ ____________ _____ __________ _____ _____ ___________ ____________.
________ ______ ____ _________ ________ ____.
_______ __________ _____ _____________ ___________ _____________ ___________ _________.
_____ ________ ________ _____ __________ ____________ _____________ _________ _____________.
_____ ____ ____________ ____________ ____________ _______ __________ _____________ ___.
_________ __________ _____________ ___________ _____ ________ ___________ _________ __.
_________ ____________ ____ _____________ __ __ ___________ _______ ______ __________ _____________ _____ _____________ _________.
_____________ ________ __ ____________ ____ _________ ________ ____ _______ _________ _________ ________ ____ ____.
___ ________ ____________ ________ _____ __ __________ ___ __ __________.
_____ __ _________ ____ ___ _____________ ______ __.
____ ___________ _____________ __ _______ _____ ____ _____________ __________ __________ _____ ______.
__________ __________ ___________ ________ ________ ________ ___ ____________ ____ __________ _______.
_________ _______ ___ ____ __________ _______ _________.
___ __ __________ _____ ___________ ____ _______.
____________ ________ ___ _________ ______ __________ ____ _______ _________ ___________ ________.
_____ ______ ____________ _______ _________ _________ ____ ______.
__________ _____ ______ _______ _________ ________ ______ _____ ____ ______ _______ ____________ _____ _____________.
___________ _______ ______ ___________ ___________ __________ ___________ __________.
________ __ ________ ________ _____________ ___ ____________ __________ _____ ___ __ ____ ___ ____.
__ ____________ ____________ ___ ___ _________ _____ ___ _____________ ______ ____________ _____________.
__________ ___ ____ _____________ ___.
Click Here to Order Full Assignment on WhatsApp







Degree : PG DIPLOMA PROGRAMMES
Course Name : Post Graduate Diploma in Applied Statistics
Course Code : PGDAST
Subject Name : Basic Statistics Lab
Subject Code : MSTL 001
Year : 2023



IGNOU MSTL 001 Solved Assignment 2023
Click Here to Order on WhatsApp

Related Question


The scores (out of 100) secured by 60 employees of three different departments D1, D2 and D3 who participated in a study, are presented in the following table:

Employee No. Scores of D1 Scores of D2 Scores of D3 Employee No. Scores of D1 Scores of D2 Scores of D3
1 54 78 56 31 59 76 57
2 49 73 55 32 57 87 66
3 36 72 52 33 46 80 62
4 64 87 67 34 57 82 61
5 47 85 65 35 48 78 59
6 46 75 58 36 65 90 66
7 61 94 70 37 69 94 70
8 56 88 67 38 43 73 54
9 57 81 59 39 36 68 48
10 43 73 56 40 43 66 48
11 60 89 69 41 56 90 66
12 54 92 70 42 52 73 56
13 56 96 75 43 57 83 61
14 55 85 62 44 45 69 51
15 53 89 66 45 46 75 58
16 63 85 64 46 58 88 64
17 50 67 47 47 49 73 53
18 67 96 71 48 60 92 68
19 50 67 49 49 63 81 59
20 54 87 64 50 51 78 57
21 41 69 49 51 53 76 58
22 53 83 60 52 47 76 56
23 55 85 64 53 38 68 52
24 58 76 59 54 46 82 63
25 36 70 54 55 39 66 47
26 49 71 51 56 67 91 71
27 62 95 74 57 61 82 61
28 66 88 65 58 56 83 60
29 53 75 56 59 48 67 50
30 49 88 64 60 35 68 50

 i) Compute the correlation coefficient between scores of the employees working in department D1 and the joint effects of scores of the employees of departments D1 and D2.

ii) Compute the correlation coefficient between scores of the employees working in departments D1 and D2 after eliminating the linear effect of the scores of departments D3.

iii) Also represent the scores obtained by departments D1, D2 and D3 using box plot. 


An investigation was performed to study the impacts of different types of machines on the production of a particular variety of toys. The six machines (A, B, C, D, E and F) are assigned at random to 36 cells of the square with the restriction that each machine is used only once by each operator and in each time-period. The following design was obtained in which 6 operators are arranged in “columns" and 6 time-periods are in “rows": 

  Operator
1 2 3 4 5 6
Time Period 1 A B C D E F
2 B C D E F A
3 C D E F A B
4 D E F A B C
5 E F A B C D
6 F A B C D E

 The average production in a day is given as follows:  

  Operator
1 2 3 4 5 6
Time Period 1 142 148 149 149 154 147
2 145 150 152 155 148 151
3 149 147 151 148 148 150
4 138 141 146 145 149 147
5 141 153 152 151 151 149
6 147 149 150 146 150 148

 Assuming that the effect of each operator, time-period and machine are normally distributed with approximately equal variances, analyse the design at 1% level of significance. Test whether the effect of the different operators, time periods and machines on the production are significant or not. If significant, do the pair-wise comparison between them.  


A cooking oil supplier distributed two types of oils, say Oil A and Oil B to a large numbers of retail stores. The supplier wants to compare the popularity of both oils. For this purpose, he selects a sample of 100 stores and tracks record of the sold oils (in litres) of each type at each store. The data are noted in the following table:  

Store No. Oil A Oil B Store No. Oil A Oil B
1 161 419 51 478 196
2 285 411 52 284 241
3 219 168 53 488 182
4 321 241 54 447 132
5 435 125 55 384 322
6 325 261 56 267 341
7 463 119 57 390 139
8 319 285 58 270 462
9 108 441 59 381 227
10 328 213 60 252 140
11 479 116 61 245 420
12 285 319 62 196 474
13 489 135 63 201 392
14 448 187 64 227 452
15 385 349 65 181 406
16 268 279 66 441 397
17 391 306 67 130 375
18 271 296 68 213 455
19 382 269 69 373 367
20 253 403 70 190 503
21 246 309 71 280 366
22 197 424 72 236 486
23 202 349 73 297 171
24 228 250 74 421 219
25 182 457 75 340 173
26 442 196 76 380 418
27 131 240 77 308 454
28 214 337 78 361 228
29 374 252 79 183 432
30 191 423 80 121 468
31 281 322 81 162 231
32 237 406 82 286 252
33 298 146 83 220 283
34 422 175 84 322 114
35 341 487 85 436 325
36 381 278 86 326 213
37 309 442 87 464 229
38 362 326 88 320 183
39 184 414 89 120 291
40 122 377 90 329 175
41 160 250 91 480 141
42 284 272 92 286 394
43 218 356 93 490 163
44 320 366 94 449 134
45 434 170 95 386 130
46 324 213 96 134 459
47 462 147 97 392 363
48 318 195 98 272 315
49 118 452 99 383 338
50 327 385 100 254 365

 Answer the following:
i) Which type of oil has more average sales?
ii) Which oil shows greater variability in the sales?
iii) Determine the correlation between both types of oils.
iv) Compute suitable width of the class intervals for both oils,
v) Construct the continuous frequency distribution for both oils. 

 


An experiment was conducted to compare two metals: A and B, as bonding agents for an alloy material. Components of the alloy were bonded using the metals as bonding agents, and the pressures required to break the bonds were measured. The data for the pressures required for breaking the metal are given in the following table:

S. No. Breaking Pressure S. No. Breaking Pressure
Metal A Metal B Metal A Metal B
1 71.9 72.2 21 86.5 70.6
2 68.8 66.4 22 74.3 74.6
3 82.6 74.5 23 71.2 68.8
4 78.1 60.6 24 85 76.9
5 74.2 73.2 25 80.5 63
6 70.8 68.7 26 76.6 75.6
7 84.9 69 27 73.2 71.1
8 72.7 73 28 87.3 71.4
9 69.6 67.2 29 75.1 75.4
10 83.4 75.3 30 72 69.6
11 78.9 61.4 31 85.8 77.3
12 75 74 32 81.3 63.4
13 71.6 69.5 33 77.4 76
14 85.7 69.8 34 74 71.5
15 73.5 73.8 35 88.1 71.8
16 70.4 68 36 75.9 75.8
17 84.2 76.1 37 72.8 70
18 79.7 62.2 38 86.6 77.7
19 75.8 74.8 39 82.1 63.8
20 72.4 70.3 40 78.2 76.4

 If the pressure required to break both metals are normally distributed, then answers the following questions:
i) Are the variances of the distributions of the pressure of Metals A and B equal at 5% level of significance?
ii) If yes, check whether the average pressure for Metal A is more than the Metal B at 5% level of significance? 

 

Call Now
Contact Us
Welcome to IGNOU Academy

Click to Contact Us

Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088
New to IGNOU Login to Get Every Update