
This is latest Solved Assignment of MTE 5 of BSC .
If you Need this Assignment, Simply WhatsApp us
| Title Name | IGNOU MTE 5 Solved Assignment 2025 |
|---|---|
| Type | Soft Copy (E-Assignment) .pdf |
| University | IGNOU |
| Degree | BACHELOR DEGREE PROGRAMMES |
| Course Code | BSC |
| Course Name | Bachelor in Science |
| Subject Code | MTE 5 |
| Subject Name | Analytical Geometry |
| Year | 2025 |
| Session | |
| Language | English Medium |
| Assignment Code | MTE-05/Assignmentt-1//2025 |
| Product Description | Assignment of BSC (Bachelor in Science) 2025. Latest MTE 05 2025 Solved Assignment Solutions |
| Last Date of IGNOU Assignment Submission | Last Date of Submission of IGNOU MTE-05 (BSC) 2025 Assignment is for January 2025 Session: 30th September, 2025 (for December 2025 Term End Exam).Semester WiseJanuary 2025 Session: 30th March, 2025 (for June 2025 Term End Exam).July 2025 Session: 30th September, 2025 (for December 2025 Term End Exam). |
Ques 1.
Check whether the following statements are true or false. Justify your answer with a short explanation or a counter example.
(i) The numbers are the direction cosines of a line.
(ii) The points (1, 2), (7, 6) and (4, 4) are collinear.
(iii) The conic 12x² + 12xy + 3y² + 2x + y = 0 is degenerate.
(iv) Intersection of the ellipsoid x2 /4+ y2 /25+ z2 /4 = 1 and the plane y = 5 is a circle.
(v) The conicoid 3x² + y² + 2xy+x-y-z+1=0 is non-central.
(vi) The line y = x is a tangent to the parabola y² = cx, c > 0.
(vii) The equation 2x² + y + z + 1 = 0 represents a paraboloid.
(viii) Projection of a line segment on a line perpendicular to it is the length of the line segment.
(ix) The lines x =- y, z = 2 and x = y, z = 0 intersect each other.
(x) Every planar section of a cylinder is a circle.
Ques 2.
Trace the conic x² 2xy + y² 3x + 2y + 3 = 0.
Ques 3.
Prove that the conic passing through the points of intersection of two rectangular hyperbolas is also a rectangular hyperbola.
Ques 4.
Show that the line x = y touches the conic ax² + 2hxy + by² + 2gx + 2fy + c = 0, if f + g = 0.
Ques 5.
Let P be the midpoint of the line segment joining the points A(a + b, b) and B(a - b, a + b). Find the slope of the line passing through P and Q (b,- a/2). Under what conditions on a and b, this line is parallel to the y-axis?
Ques 6.
Show that represents the equation of a line passing 1-4 7 1 through (2, 3) and (-4, 7).
Ques 7.
Prove that the equation of a line through (x1, y1) and (x2, y2) can be expressed in the form
Ques 8.
Find the eccentricity, foci, centre and directrices of the ellipse . Also 4 give a rough sketch of it.
Ques 9.
Prove that the length of the chord of a parabola which passes through the focus and which is inclined at 30° to the axis of the parabola is four times the length of the latus rectum.
Ques 10.
Find the equations of the line through (1,3,4) and parallel to the line joining the points (-4, 5, 3) and (8, 9, 7).
Ques 11.
Find the equation of the plane which passes through the line of intersection of the planes 3x + 4y - 5z = 9 and 2x+6y+6z = 7 and which is perpendicular to the plane 3x + 2y5z + 6 = 0.
Ques 12.
Find the distance of the origin from the plane which passes through (2, 1, 8), (1, 0, 2) and (-3, 4, 6).
Ques 13.
Show that the plane 2x + y + 2z = 0 is a tangent plane to the sphere x² + y² + z2-2x+2y-2z + 2 = 0.
Ques 14.
Find the equation of the sphere touching the plane 8x + 5y + 3z + 1 = 0 at (3,-1,-1) and cutting the sphere x² + y2 + z²-2x+y-z-6=0 orthogonally.
Ques 15.
Find the angle between the lines of intersection of the cone 4x2 + y² + 4z² + 4yz + 2zx = 0 and the plane x + 2y + 3z = 0.
Ques 16.
Find the equation of the cylinder with base x² + y² + z²-3x6z + 9 = 0, x - 2y+2z-6 = 0.
Ques 17.
Show that the perpendiculars drawn from the origin to tangent planes to the cone x2 y2 + 5z² + 4xy = 0 lie on the cone x2 y2 + z² + 4xy = 0.
Ques 18.
Transform the equation x² + 2y² 6z2 - 2x - 8y+3 = 0 by shifting the origin to (1, 2, 0) without changing the directions of the coordinate axes. What object does this new equation represent? Give a rough sketch of it.
Ques 19.
Show that the conicoid 2x² + 2y² + xyyz + zx + 2xy + 5z + 1 = 0 is central. Hence find its centre.
Ques 20.
Examine which of the following conicoids are central and which are non-central. Also determine which of the central conicoids have centre at the origin.
(i) x² + y² + z² + 4x + 3y – z = 0
(ii) 2x2-y2z2 + xy + yz - zx = 1
(iii) x2 + y2 - z2 -2xy -3yz - 6zx + x - 2y + 5z + 4 = 0
Ques 21.
Find the transformation of the equation 12x² - 2y2 + z² = 2xy if the origin is kept fixed and the axes are rotated in such a way that the direction ratios of the new axes are 1, -3, 0; 3, 1, 0; 0, 0, 1.
Ques 22.
Find the projection of the line segment joining the points (1,-1, 6) and (4, 3, 2) on the line x-4/ 3 = -y = z/5.
Ques 23.
Identify and trace the conicoid y² + 3z2 = x. Describe its sections by the planes y = 0 and z = 0.
Ques 24.
Find the equation of tangent plane to the conicoid x² + 3y² = 4z at (2, -4, 13). Represent the tangent plane geometrically.
Ques 25.
जांच कीजिए कि निम्नलिखित कथन सत्य हैं अथवा असत्य। अपने उत्तर की पुष्टि लघु व्याख्या या प्रति-उदाहरण द्वारा कीजिए।
(i) संख्याएँ एक रेखा की दिक्कोज्याएं हैं।
(ii) बिंदु (1, 2), (7,6) और (4,4) संरेखीय हैं।
(iii) शंकव अपभ्रष्ट है।
(iv) दीर्घवृत्त का समतल y = 5 से प्रतिच्छेद एक वृत्त है।
(v) शांकवज अकेंद्रीय है।
(vi) रेखा y = x परवलय की स्पर्श रेखा है।
(vii) समीकरण एक परवलज को निरूपित करता है।
(viii) किसी रेखा-खण्ड का उसकी लंब रेखा पर प्रक्षेप उस रेखा-खण्ड की लंबाई के बराबर होता है।
(ix) रेखाएं और
परस्पर प्रतिच्छेद करती हैं।
(x) बेलन का समतल परिच्छेद एक वृत्त होता है।
Ques 26.
शांकव को अनुरेखित कीजिए।
Ques 27.
सिद्ध कि दो समकोणीय अतिपरवलयों के प्रतिच्छेद बिन्दुओं से अंतिम वाला शंकव भी समकोणीय अतिपरवल होता है।
Ques 28.
दिखाइए कि रेखा x = y शांकव को स्पर्श करेगी, यदि
हो।
Ques 29.
मान लीजिए P बिंदुओं A(a + b, b) और B(ab, a + b) को मिलाने वाले रेखा-खण्ड का मध्य-बिंदु है। P और Q (b) से गुजरने वाली रेखा की प्रवणता निकालिए। a और b पर किन प्रतिबंधों के अधीन यह रेखा -अक्ष के समांतर होगी?
Ques 30.
(i) दिखाइए कि बिंदुओं (2,3) और (-4,7) से गुजरने वाली रेखा को निरूपित करता है।
Ques 31.
(ii) सिद्ध कीजिए कि (x1,y1) और (x2, y2) से गुजरने वाली रेखा के समीकरण y को के रूप में लिखा जा सकता है।
Ques 32.
दीर्घवृत्त की उत्केंद्रता, नाभियां, केंद्र और नियताएं ज्ञात कीजिए। इसका स्थूल चित्र भी बनाइए।
Ques 33.
सिद्ध कीजिए कि किसी परवलय की नाभि से गुजरने वाली तथा उस परवलय की अक्ष से 30° पर झुकी हुई जीवा की लंबाई, उस परवलय की नामिलंव की लंबाई की चार गुना होती है।
Ques 34.
बिंदु (1,3,4) से गुजरने वाली तथा बिंदुओं (-4,5,3) और (8,9,7) को मिलाने वाली रेखा के समांतर रेखा के समीकरण ज्ञात कीजिए।
Ques 35.
समतलों की प्रतिच्छेद रेखा से गुजरने वाले तथा समतल
पर लंब समतल का समीकरण ज्ञात कीजिए।
Ques 36.
मूलबिंदु की उस समतल से दूरी ज्ञात कीजिए जो बिंदुओं (2, 1, 8 , 1, 0, 2) और (-3,4,6) से गुजरता है।
Ques 37.
दिखाइए कि समतल गोले
का स्पर्श तल है।
Ques 38.
समतल को (3,-1,-1) पर स्पर्श करने वाले तथा गोले
को लांबिकतः प्रतिच्छेद करने वाले गोले का समीकरण ज्ञात कीजिए।
Ques 39.
शंकु तथा समतल
की प्रतिच्छेदी रेखाओं के बीच का कोण ज्ञात कीजिए।
Ques 40.
उस बेलन का समीकरण ज्ञात कीजिए जिसका आधार है।
Ques 41.
दिखाइए कि शंकु के स्पर्श तों पर मूलबिंदु से डाले गए लंब शंकु
Ques 42.
निर्देशांक अक्षों की दिशाओं को परिवर्तित किए बिना मूलबिंदु को (1,2,0) पर स्थानांतरित करके समीकरण को रूपांतरित कीजिए। यह नया समीकरण क्या निरुपित करता है? इसका स्थूल आरेख बनाइए।
Ques 43.
दिखाइए कि शांकवज केंद्रीय है। अतः इसका केंद्र निकालिए।
Ques 44.
जांच कीजिए कि निम्नलिखित शांकवों में से कौनसे शांकवज केंद्रीय हैं और कौनसे अकेंद्रीय हैं। यह भी पता कीजिए कि जो केंद्रीय शांकवज हैं उनमें से किनके केंद्र मूलबिंदु पर है।
(i)
(ii)
(iii)
Ques 45.
समीकरण को रूपांतरित कीजिए, यदि मूलबिंदु को स्थिर रखा 2 जाए और अक्षों को इस प्रकार घुमाया जाए कि नए अक्षों के दिक-अनुपात 1,-3,0; 3, 1, 0, 0, 0,1 हो।
Ques 46.
बिंदुओं (1,-1,6) और (4,3,2) को मिलाने वाले रेखा-खण्ड का रेखा प्रक्षेप ज्ञात कीजिए।
Ques 47.
शांकवज को पहचानिए तथा आरेखित कीजिए। समतलों y = 0 और z = 0 द्वारा इसके परिच्छेदों का वर्णन कीजिए।
Ques 48.
बिंदु (2,-4,13) पर शांकवज के स्पर्श तल का समीकरण ज्ञात कीजिए। स्पर्श तल को ज्यामितीय रूप से दर्शाइए।
Looking for IGNOU MTE 5 Solved Assignment 2025. You are on the Right Website. We provide Help book of Solved Assignment of BSC MTE 5 - Analytical Geometryof year 2025 of very low price.
If you want this Help Book of IGNOU MTE 5 2025 Simply Call Us @ 9199852182 / 9852900088 or you can whatsApp Us @ 9199852182
IGNOU BSC Assignments Jan - July 2025 - IGNOU University has uploaded its current session Assignment of the BSC Programme for the session year 2025. Students of the BSC Programme can now download Assignment questions from this page. Candidates have to compulsory download those assignments to get a permit of attending the Term End Exam of the IGNOU BSC Programme.
Download a PDF soft copy of IGNOU MTE 5 Analytical Geometry BSC Latest Solved Assignment for Session January 2025 - December 2025 in English Language.
If you are searching out Ignou BSC MTE 5 solved assignment? So this platform is the high-quality platform for Ignou BSC MTE 5 solved assignment. Solved Assignment Soft Copy & Hard Copy. We will try to solve all the problems related to your Assignment. All the questions were answered as per the guidelines. The goal of IGNOU Solution is democratizing higher education by taking education to the doorsteps of the learners and providing access to high quality material. Get the solved assignment for MTE 5 Analytical Geometry course offered by IGNOU for the year 2025.Are you a student of high IGNOU looking for high quality and accurate IGNOU MTE 5 Solved Assignment 2025 English Medium?
Students who are searching for IGNOU Bachelor in Science (BSC) Solved Assignments 2025 at low cost. We provide all Solved Assignments, Project reports for Masters & Bachelor students for IGNOU. Get better grades with our assignments! ensuring that our IGNOU Bachelor in Science Solved Assignment meet the highest standards of quality and accuracy.Here you will find some assignment solutions for IGNOU BSC Courses that you can download and look at. All assignments provided here have been solved.IGNOU MTE 5 SOLVED ASSIGNMENT 2025. Title Name MTE 5 English Solved Assignment 2025. Service Type Solved Assignment (Soft copy/PDF).
Are you an IGNOU student who wants to download IGNOU Solved Assignment 2024? IGNOU BACHELOR DEGREE PROGRAMMES Solved Assignment 2023-24 Session. IGNOU Solved Assignment and In this post, we will provide you with all solved assignments.
If you’ve arrived at this page, you’re looking for a free PDF download of the IGNOU BSC Solved Assignment 2025. BSC is for Bachelor in Science.
IGNOU solved assignments are a set of questions or tasks that students must complete and submit to their respective study centers. The solved assignments are provided by IGNOU Academy and must be completed by the students themselves.
| Course Name | Bachelor in Science |
| Course Code | BSC |
| Programm | BACHELOR DEGREE PROGRAMMES Courses |
| Language | English |
| IGNOU MTE 5 Solved Assignment | ignou assignment 2025, 2025 MTE 5 | ||
| IGNOU MTE 5 Assignment | ignou solved assignment MTE 5 | ||
| MTE 5 Assignment 2025 | solved assignment MTE 5 | ||
| MTE 5 Assignment 2025 | assignment of ignou MTE 5 | ||
| Download IGNOU MTE 5 Solved Assignment 2025 |
| ||
| Ignou result MTE 5 | Ignou Assignment Solution MTE 5 |
Click to Contact Us
Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088