
| Title Name | IGNOU MTE 2 SOLVED ASSIGNMENT HINDI |
|---|---|
| Type | Soft Copy (E-Assignment) .pdf |
| University | IGNOU |
| Degree | BACHELOR DEGREE PROGRAMMES |
| Course Code | BSC |
| Course Name | Bachelor in Science |
| Subject Code | MTE 2 |
| Subject Name | Linear Algebra |
| Year | 2026 |
| Session | |
| Language | English Medium |
| Assignment Code | MTE-02/Assignmentt-1//2026 |
| Product Description | Assignment of BSC (Bachelor in Science) 2026. Latest MTE 02 2026 Solved Assignment Solutions |
| Last Date of IGNOU Assignment Submission | Last Date of Submission of IGNOU MTE-02 (BSC) 2026 Assignment is for January 2026 Session: 30th September, 2026 (for December 2026 Term End Exam).Semester WiseJanuary 2026 Session: 30th March, 2026 (for June 2026 Term End Exam).July 2026 Session: 30th September, 2026 (for December 2026 Term End Exam). |
Ques 1.
निम्नलिखित में से कौन से कथन सत्य हैं और कौन से असत्य हैं? लघु उपपत्ति या प्रति उदाहरण के साथ अपनी उत्तर की पुष्टि कीजिए।
i) द्वारा परिभाषित फलन
, 1-1 है।
ii) द्वारा परिभाषित संक्रिया S पर द्वि-आधारी संक्रिया है जहाँ S समुच्चय
है।
iii) समुच्चय
की उपसमष्टि है।
iv) जाति 6 का कोई आव्यूह नहीं होता।
v) यदि V और V' सदिश समष्टियाँ हैं और रैखिक रूपांतरण है, तब जब भी
रैखिकता: स्वतंत्र होते हैं, तब
भी रैखिकता: स्वतंत्र होते हैं।
vi) यदि V एक सदिश समष्टि है और वाला रैखिक सँकारक है, तब T विकर्णीय नहीं होता।
vii) एक आव्यूह के अल्पिष्ठ बहुपद की कोटि अधिकतम 2 है।
viii)कोई भी आव्यूह A के लिए
।
ix) केवल शून्य आव्यूह ऐसा आव्यूह है जो सममित और विषम सममित दोनों होता है।
x) कोई भी ऐसा निर्देशांक रूपांतरण नहीं है जो द्विघाती समघात x2 + y2 + z2 को द्विघाती समघात xz + yz में रूपांतरित करता है।
Ques 2.
द्वारा परिभाषित फलन
लीजिए:
Ques 3.
जाँच कीजिए कि f(x) सुपरिभाषित और 1-1 है।
Ques 4.
जाँच कीजिए कि किसी के लिए
है।
Ques 5.
जाँच कीजिए कि द्वारा दिया गया
सुपरिभाषित और 1-1 है। इसके आगे जाँच कीजिए कि किसी
के लिए
है।
Ques 6.
जाँच कीजिए कि के लिए
और
के लिए
।
Ques 7.
मूल बिन्दु से समतल के लंब की दिक्कोज्याएं ज्ञात कीजिए।
Ques 8.
मान लीजिए V ऐसे सभी फलनो का समुच्चय है जो में दो बार अवकलनीय हैं और
Ques 9.
जाँच कीजिए कि पर रैखिकता: स्वतंत्र समुच्चय है। (संकेत: समीकरण
Ques 10.
जाँच कीजिए कि पर रैखिकता: स्वतंत्र समुच्चय है। (संकेत: समीकरण
लीजिए।
इत्यादि रखिए और ai के हल कीजिए)
Ques 11.
) Which of the following statements are true and which are false? Justify your answer with a short proof or a counterexample.
i) The function defined by
is 1-1.
ii) The operation $ defined byx y = \log(xy)is a binary operation onS, whereSis the set\{x \in \mathbf{R} \mid x > 0\}$.
iii) The set is a subspace of
.
iv) There is no matrix of rank 6.
v) If V and V' are vector spaces and is a linear transformation, then whenever
are linearly independent,
are also linearly independent.
vi) If V is a vector space and is a linear operator with
, then T is not diagonalisable.
vii) The degree of the minimal polynomial of a matrix is at most 2.
viii) For any matrix A,
.
ix) The only matrix which is both symmetric and skew-symmetric is the zero matrix.
x) There is no co-ordinate transformation that transforms the quadratic form x2 + y2 + z2 to the quadratic form xz + yz.
Ques 12.
Consider the function defined by
.
Ques 13.
Check that f(x) is well defined and 1 - 1.
Ques 14.
Check that for any
.
Ques 15.
Check that given by
is well defined and 1 - 1.
Further, check that
for any
.
Ques 16.
Check that for
and
for
.
Ques 17.
Find the direction cosines of the perpendicular from the origin to the plane
Ques 18.
Find the direction cosines of the perpendicular from the origin to the plane
Ques 19.
Let V be the set of all functions that are twice differentiable in and
.
Ques 20.
Check that S is a linearly independent set over . (Hint: Consider the equation
.
Put
, etc. and solve for ai. )
Ques 21.
Let and let
be the function defined by
.
Ques 22.
Check that .
Ques 23.
Write down the matrix of T on W w.r.t the basis S.
Ques 24.
Is the matrix of the linear operator T non-singular? Justify your answer.
Ques 25.
Show that, if A is any matrix with real entries, then there is a
symmetric matrix S and a
skew symmetric matrix S' such that
.
Ques 26.
Find the solutions to the following system of equations by reducing the corresponding augmented matrix to row-reduced echelon form.
Ques 27.
For the following matrices, check whether there exists an invertible matrix P such that P-1AP is diagonal. When such a P exists, find P.
i)
Ques 28.
Find the inverse of the matrix B in part a) by using Cayley-Hamilton theorem.
Ques 29.
) Using the fact that for any two matrices A and B, prove the identity
Ques 30.
Find the values of for which the matrix
is Hermitian.
Ques 31.
) Are there values of for which the matrix
Ques 32.
Let (x1, x2, x3) and (y1, y2, y3) represent the coordinates with respect to the bases
,
. If
, find the representation of Q in terms of (y1, y2, y3).
Ques 33.
Find the orthogonal canonical reduction of the quadratic form x2 - 2y2 + z2 + 2xy + 6yz and its principal axes. Also, find the rank and signature of the quadratic form.
Ques 34.
a) Apply the Gram-Schmidt diagonalisation process to find an orthonormal basis for the subspace of generated by the vectors
Ques 35.
निम्नलिखित में से कौन से कथन सत्य हैं और कौन से असत्य हैं? लघु उपपत्ति या प्रति उदाहरण के साथ अपनी उत्तर की पुष्टि कीजिए।
i) द्वारा परिभाषित फलन
, 1-1 है।
ii) द्वारा परिभाषित संक्रिया S पर द्वि-आधारी संक्रिया है जहाँ S समुच्चय
है।
iii) समुच्चय
की उपसमष्टि है।
iv) जाति 6 का कोई आव्यूह नहीं होता।
v) यदि V और V' सदिश समष्टियाँ हैं और रैखिक रूपांतरण है, तब जब भी
रैखिकता: स्वतंत्र होते हैं, तब
भी रैखिकता: स्वतंत्र होते हैं।
vi) यदि V एक सदिश समष्टि है और वाला रैखिक सँकारक है, तब T विकर्णीय नहीं होता।
vii) एक आव्यूह के अल्पिष्ठ बहुपद की कोटि अधिकतम 2 है।
viii)कोई भी आव्यूह A के लिए
।
ix) केवल शून्य आव्यूह ऐसा आव्यूह है जो सममित और विषम सममित दोनों होता है।
x) कोई भी ऐसा निर्देशांक रूपांतरण नहीं है जो द्विघाती समघात x2 + y2 + z2 को द्विघाती समघात xz + yz में रूपांतरित करता है।
Ques 36.
द्वारा परिभाषित फलन
लीजिए:
Ques 37.
जाँच कीजिए कि f(x) सुपरिभाषित और 1-1 है।
Ques 38.
जाँच कीजिए कि किसी के लिए
है।
Ques 39.
जाँच कीजिए कि द्वारा दिया गया
सुपरिभाषित और 1-1 है। इसके आगे जाँच कीजिए कि किसी
के लिए
है।
Ques 40.
जाँच कीजिए कि के लिए
और
के लिए
।
Ques 41.
मूल बिन्दु से समतल के लंब की दिक्कोज्याएं ज्ञात कीजिए।
Ques 42.
मान लीजिए V ऐसे सभी फलनो का समुच्चय है जो में दो बार अवकलनीय हैं और
Ques 43.
जाँच कीजिए कि पर रैखिकता: स्वतंत्र समुच्चय है। (संकेत: समीकरण
Ques 44.
जाँच कीजिए कि पर रैखिकता: स्वतंत्र समुच्चय है। (संकेत: समीकरण
लीजिए।
इत्यादि रखिए और ai के हल कीजिए)
Ques 45.
) Which of the following statements are true and which are false? Justify your answer with a short proof or a counterexample.
i) The function defined by
is 1-1.
ii) The operation $ defined byx y = \log(xy)is a binary operation onS, whereSis the set\{x \in \mathbf{R} \mid x > 0\}$.
iii) The set is a subspace of
.
iv) There is no matrix of rank 6.
v) If V and V' are vector spaces and is a linear transformation, then whenever
are linearly independent,
are also linearly independent.
vi) If V is a vector space and is a linear operator with
, then T is not diagonalisable.
vii) The degree of the minimal polynomial of a matrix is at most 2.
viii) For any matrix A,
.
ix) The only matrix which is both symmetric and skew-symmetric is the zero matrix.
x) There is no co-ordinate transformation that transforms the quadratic form x2 + y2 + z2 to the quadratic form xz + yz.
Ques 46.
Consider the function defined by
.
Ques 47.
Check that f(x) is well defined and 1 - 1.
Ques 48.
Check that for any
.
Ques 49.
Check that given by
is well defined and 1 - 1.
Further, check that
for any
.
Ques 50.
Check that for
and
for
.
Ques 51.
Find the direction cosines of the perpendicular from the origin to the plane
Ques 52.
Find the direction cosines of the perpendicular from the origin to the plane
Ques 53.
Let V be the set of all functions that are twice differentiable in and
.
Ques 54.
Check that S is a linearly independent set over . (Hint: Consider the equation
.
Put
, etc. and solve for ai. )
Ques 55.
Let and let
be the function defined by
.
Ques 56.
Check that .
Ques 57.
Write down the matrix of T on W w.r.t the basis S.
Ques 58.
Is the matrix of the linear operator T non-singular? Justify your answer.
Ques 59.
Show that, if A is any matrix with real entries, then there is a
symmetric matrix S and a
skew symmetric matrix S' such that
.
Ques 60.
Find the solutions to the following system of equations by reducing the corresponding augmented matrix to row-reduced echelon form.
Ques 61.
For the following matrices, check whether there exists an invertible matrix P such that P-1AP is diagonal. When such a P exists, find P.
i)
Ques 62.
Find the inverse of the matrix B in part a) by using Cayley-Hamilton theorem.
Ques 63.
) Using the fact that for any two matrices A and B, prove the identity
Ques 64.
Find the values of for which the matrix
is Hermitian.
Ques 65.
) Are there values of for which the matrix
Ques 66.
Let (x1, x2, x3) and (y1, y2, y3) represent the coordinates with respect to the bases
,
. If
, find the representation of Q in terms of (y1, y2, y3).
Ques 67.
Find the orthogonal canonical reduction of the quadratic form x2 - 2y2 + z2 + 2xy + 6yz and its principal axes. Also, find the rank and signature of the quadratic form.
Ques 68.
a) Apply the Gram-Schmidt diagonalisation process to find an orthonormal basis for the subspace of generated by the vectors
Looking for IGNOU MTE 2 Solved Assignment 2026. You are on the Right Website. We provide Help book of Solved Assignment of BSC MTE 2 - Linear Algebraof year 2026 of very low price.
If you want this Help Book of IGNOU MTE 2 2026 Simply Call Us @ 9199852182 / 9852900088 or you can whatsApp Us @ 9199852182
IGNOU BSC Assignments Jan - July 2025 - IGNOU University has uploaded its current session Assignment of the BSC Programme for the session year 2026. Students of the BSC Programme can now download Assignment questions from this page. Candidates have to compulsory download those assignments to get a permit of attending the Term End Exam of the IGNOU BSC Programme.
Download a PDF soft copy of IGNOU MTE 2 Linear Algebra BSC Latest Solved Assignment for Session January 2025 - December 2025 in English Language.
If you are searching out Ignou BSC MTE 2 solved assignment? So this platform is the high-quality platform for Ignou BSC MTE 2 solved assignment. Solved Assignment Soft Copy & Hard Copy. We will try to solve all the problems related to your Assignment. All the questions were answered as per the guidelines. The goal of IGNOU Solution is democratizing higher education by taking education to the doorsteps of the learners and providing access to high quality material. Get the solved assignment for MTE 2 Linear Algebra course offered by IGNOU for the year 2026.Are you a student of high IGNOU looking for high quality and accurate IGNOU MTE 2 Solved Assignment 2026 English Medium?
Students who are searching for IGNOU Bachelor in Science (BSC) Solved Assignments 2026 at low cost. We provide all Solved Assignments, Project reports for Masters & Bachelor students for IGNOU. Get better grades with our assignments! ensuring that our IGNOU Bachelor in Science Solved Assignment meet the highest standards of quality and accuracy.Here you will find some assignment solutions for IGNOU BSC Courses that you can download and look at. All assignments provided here have been solved.IGNOU MTE 2 SOLVED ASSIGNMENT 2026. Title Name MTE 2 English Solved Assignment 2026. Service Type Solved Assignment (Soft copy/PDF).
Are you an IGNOU student who wants to download IGNOU Solved Assignment 2024? IGNOU BACHELOR DEGREE PROGRAMMES Solved Assignment 2023-24 Session. IGNOU Solved Assignment and In this post, we will provide you with all solved assignments.
If you’ve arrived at this page, you’re looking for a free PDF download of the IGNOU BSC Solved Assignment 2026. BSC is for Bachelor in Science.
IGNOU solved assignments are a set of questions or tasks that students must complete and submit to their respective study centers. The solved assignments are provided by IGNOU Academy and must be completed by the students themselves.
| Course Name | Bachelor in Science |
| Course Code | BSC |
| Programm | BACHELOR DEGREE PROGRAMMES Courses |
| Language | English |
| IGNOU MTE 2 Solved Assignment | ignou assignment 2026, 2026 MTE 2 | ||
| IGNOU MTE 2 Assignment | ignou solved assignment MTE 2 | ||
| MTE 2 Assignment 2026 | solved assignment MTE 2 | ||
| MTE 2 Assignment 2026 | assignment of ignou MTE 2 | ||
| Download IGNOU MTE 2 Solved Assignment 2026 |
| ||
| Ignou result MTE 2 | Ignou Assignment Solution MTE 2 |
Click to Contact Us
Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088