outp

My Cart

You are Here : BACHELOR DEGREE PROGRAMMES / BDP / MTE 13
Click Here to Order on WhatsApp
IGNOU MTE 13 SOLVED ASSIGNMENT 2025

IGNOU MTE 13 SOLVED ASSIGNMENT 2025


IGNOU MTE 13 Solved Assignment 2025
Rs. 90
Rs. 15

IGNOU MTE 13 Solved Assignment 2025

This is latest Solved Assignment of MTE 13 of BDP . 

  • Latest 2025 Solved Assignment
  • Fully Solved MTE 13 2025 Assignment
  • .pdf Format
  • MTE 13 ( Discrete Mathematics )
  • Discrete Mathematics 2025 Solved Assignment
  • 2025 New Assignment

If you Need this Assignment, Simply WhatsApp us

Rs. 90
Rs. 15

Last Date of Submission of IGNOU MTE-013 (BDP) 2025 Assignment is for January 2025 Session: 30th September, 2025 (for December 2025 Term End Exam).
Semester Wise
January 2025 Session:
30th March, 2025 (for June 2025 Term End Exam).
July 2025 Session: 30th September, 2025 (for December 2025 Term End Exam).

Title NameIGNOU MTE 13 Solved Assignment 2025
TypeSoft Copy (E-Assignment) .pdf
UniversityIGNOU
DegreeBACHELOR DEGREE PROGRAMMES
Course CodeBDP
Course NameBachelor Degree Programmes
Subject CodeMTE 13
Subject NameDiscrete Mathematics
Year2025
Session
LanguageEnglish Medium
Assignment CodeMTE-013/Assignmentt-1//2025
Product DescriptionAssignment of BDP (Bachelor Degree Programmes) 2025. Latest MTE 013 2025 Solved Assignment Solutions
Last Date of IGNOU Assignment Submission
Last Date of Submission of IGNOU MTE-013 (BDP) 2025 Assignment is for January 2025 Session: 30th September, 2025 (for December 2025 Term End Exam).
Semester Wise
January 2025 Session:
30th March, 2025 (for June 2025 Term End Exam).
July 2025 Session: 30th September, 2025 (for December 2025 Term End Exam).

Rs. 90
Rs. 15
Questions Included in this Help Book

Ques 1.

जाँच कीजिए कि निम्नजिक्षित कथन सत्य है या असमय। अपने अतों की पुष्टि एक लघु उपपरित या प्रतिउदाहरण देकर कीजिए।

i) यदि किसी कथा का प्रतिस्थितकस्य है, तो वह कथन स्वयं भी साय होगा।

ii) equation एक रैखिक समधात पुनरावृणित संबंध है।

iii) पुनरावृतिसंबंधequation के एक विशेष हारका रूप है।

iv) चरी x1,x2 और x3 में एक ऐसा बूलीय व्यंजक है जिसका CNF

equation है।

v) यदि एक पासे को तीन बार कैका जाता है तो प्रत्येक बार प्राप्त होने की प्रायिकता equation है।

vi) प्रत्येक विषम चक्र की वर्णिक संख्या और कोर वर्णिक संख्यामा होती है।

vii) प्रत्येक ऑयलरीय ग्राफ हैमिल्टोनीय है।

viii)  equationउन तरीकों की संख्या को दर्शाता है जिनमें किन्हीं 3 वस्तुओं को 4 संदूकों में रखा जाना है।

ix) 5 या अधिक शीर्षों पर एक स्वपूरक समतलीय याक का अभिनव है।

x) 6 के विभाजनों की संख्या 10 है।

Ques 2.

सूरीय व्यंजक equation कार्क परिपथ बनाइए।

Ques 3.

निम्नलिखित कराको प्रकरूप में लिखिए।

i) बगीचे में एक नीली आँख वाला आदमी है।

ii) बगीचे में नीली आँखों वाले प्रायेक आद‌मी ने एक लाल टोपी पहनी हुई है।

iii)यदि किसी आद‌मी ने कोई भी टोपी नहीं पहनी है, तो उसकी आँकाली है।

Ques 4.

जनक फलों के प्रयोग से equationजातकीजिए।

Ques 5.

साद "COMBINSTORICS" के अको व्यवस्थित करने के ग 77 करोड़ तरीके हैं। इन मरीकी की ठीक-ठीक संख्या जात कीजिए।

Ques 6.

पुनरावृ‌त्ति संबंध

equation

को हम कीजिए।

Ques 7.

समुच्चय equation से (1,2,3,4) पर सभी आच्छादक फसनी की सूची बनाइए। समुच्चयequation से (1,2,3,4,5) पर किन आउाद‌क फलन हैं?

Ques 8.

किन्हीं कथनी  p,q और r के लिए, सिद्ध कीजिए।

equation

Ques 9.

नीचे दिए ग्राफ के तीन अतुल्यकारी प्रेरित उपया बाहर, जिनमें प्रत्येक के शीर्षों की संख्या समान हो। अपने चयन की पुष्टि कीजिए।

Ques 10.

क्या पिटर्सन साफ का पूरक समीय है? अपने उत्तर की पुष्टि कीजिए।

Ques 11.

एक ग्राफ के उपविभाजन से आप क्या समोर का एक हैमिल्टनी की उपविभाजन हैमिल्टीनीया होता है? पुष्टि कीजिए।

Ques 12.

MTE-13 की जून, 2021 संयंत्र परीक्षा में निम्नलिखित कथन की एक फायक्ष और एक परीक्षा उपपन्ति देने के लिए कहा गया था।

यदि equationइस प्रकार है कि equationसम है और equation भी सम है, तो b एक सम संख्या होगी

एक छात्र ने परीक्ष उपपति इस प्रकार दी।

"मान लीजिए b बराबरm+1 है, जोकि एक विषम संख्या है। हम पहले से ही जानते हैं कि a और equation सम संख्याएँ हैं। यदि हम equation में b =m+1 रख दें तो यह a + m + 1 हो जाती है, जो कि विषम संख्या है। इससे दिए गए कथन का विरोध उत्पन होता है। इसलिए, ब एक सम संख्या है।"

उपरोक्त उपपन्ति में क्या गलत है? साथ ही, एक सही प्रत्यक्ष एवं एक परोक्ष उपपन्ति दीजिए।

Ques 13.

संख्या 7 के सभी विभाजन को लिखिए और उनकी गणना कीजिए। अपनी उत्तर की जाँच के लिए खंड 2 की इकाई 5 के प्रमेया 5 में equation लेकर pn जनक नाका प्रयोग कीजिए। 

Ques 14.

x5को पतली कमणिली के रूप में लिखिए और इस प्रकार equation के लिए equation का मान

Ques 15.

यदि हमें केवल मारुति 800, टाटा सफारी या स्कोर्पियो को ही व्यवस्थित करना है तो इन माडलों की कारों को ॥ स्थानों वाली एक पंक्ति में व्यवस्थित करने के तरीकों की संख्या व, के लिए एक पुनरावृत्ति संबंध ज्ञात कीजिए। एक टाटा सफारी या स्कोर्पियो को दो स्थानों की जरूरत होती है जबकि एक मारुति 800 को केवल एक स्थान की जरूरत होती है। मान कर चलिए कि आपके पास प्रत्येक माडल की अनगिनत कारें हैं, और हम एक ही माडल की दो कारों में फर्क नहीं करते हैं।

Ques 16.

यदि equation के लिए Km,n हैमिल्टोनी है पुष्टि कीजिए। और किस प्रकार संबंधित हैं? अपने उत्तर की 

Ques 17.

यदि 50 साइकिली की रंगने के लिए रंग का प्रयोग किया गया है और प्रत्येक साइकिल को एक ही रंग से रंगा गया है, जो दिखाइए कि कम से कम साइकिलों को एक ही रंग से रंगा गया है।

Ques 18.

एक संदूक में 6 साल और 4 ही गई हैं। क्या प्रायिकता है कि संदूक से याद‌छया चुनी हुई चार गौदों में से दो गर्दै जाम और दोहरी हैं?

Ques 19.

किसी ग्राफ G के लिए शीर्ष-संबद्वतांक और काट शीर्ष समुच्चय परिभाषित कीजिए। नीचे दिए गए ग्राफ

के लिए शीर्ष - संबद्वतांक और काट शीर्ष समुच्चय ज्ञात कीजिए।

Ques 20.

0 से 759 तक की संख्या में से किसी संसाली या से विभाजन नहीं है? 

क) पुनरावृ‌नित संबंध

equationकी जनक फना विधि से हम कीजिए। साथ ही अपनी उन्तार से जात कीजिए।

Ques 21.

क्या 7 सीधी पर कोई 4-नियमित साफ है अपने उत्तम की पुष्टि कीजिए। 

Ques 22.

नीचे दी हुई तालिका में परिभाषित करन के लिए खूनीयाव्यांजक ज्ञात कीजिए।

equation

Ques 23.

Check whether the following statements are true or not. Justify your answers with a short proof or a counter example.

i) If the contrapositive of a statement is true, then the statement itself is also true.

ii) an+3an-1+2an-2= 2" is a linear homogeneous recurrence relation.

iii) A particular solution of the recurrence relation an-2an-1 + an-2=1 has the form Cn2.

iv) There exists a boolean expression in variables x,x, and x, with CNF as

           equation

v) If a dice is rolled thrice, then the probability of getting a 6 each time is equation

vi) Every odd cycle has the same chromatic and edge chromatic numbers.

vii) Every Eulerian graph is Hamiltonian.

viii) equation gives the number of ways in which any 3 objects can be placed in any 4 boxes.

ix) There exists a self-complementary planar graph on 5 or more vertices.

x) The number of partitions of 6 is 10.

Ques 24.

Draw the logic circuit for the Boolean expression equation

Ques 25.

Express the following statements in symbolic form.

i) There is a man in the park with blue eyes.

ii) Every blue-eyed man in the park is wearing a red hat.

iii) If a man wears no hat, then he has black eyes.

Ques 26.

Using generating functions find equation

Ques 27.

There are about 77 crore ways to arrange the letters of the word “COMBINATORICS”. Count the exact number of such ways.

Ques 28.

Solve the recurrence relation:

equation

Ques 29.

List all the onto mappings from the set {a,b,c,d} to {1,2,3,4}. How many onto mappings are there form {a,b,c,d} to {1,2,3,4,5}?

Ques 30.

For any statements p,q and r, prove that equation

Ques 31.

Draw three nonisomorphic induced subgraphs of the following graph, each having the same number of vertices. Justify your choice.

Ques 32.

Is the complement of the Peterson graph planar? Justify your answer.

Ques 33.

What do you understand by a subdivision of a graph? Is every subdivision of a Hamiltonian graph Hamiltonian? Justify.

Ques 34.

In the June, 2021 Term-End Examination of MTE-13, it was asked to give a direct and an indirect proof of the following statement.

"If a,b ∈ Z such that a is even and a+b is even, then b is even."

One student gave an indirect proof as follows:

"Let b be m+1, which is an odd number. We already know a and a+b are even. If we substitute b=m+1 in a + b, it becomes a+m+1, which is an odd number. This contradicts the given statement. Hence b is an even number."

What is wrong with the above proof? Also give a correct direct and an indirect proof.

Ques 35.

write down and count all the partitions of the number 7. To verify your answer use the generating function for P, taking n =7 in Theorem 5 (of Unit 5, Block2).

Ques 36.

Express x5 in terms of falling factorials and hence evaluate equation for m = 0,1,2,3,4,5.

Ques 37.

Find a recurrence relation for an, the number of ways to arrange cars in a row with n spaces if we can use Maruti 800, Tata Safari or Scorpio. A Tata Safari or Scorpio requires two spaces, whereas a Maruti 800 requires just one space. Assume that you have unlimited number of each type of car and we do not distinguish between 2 cars of the same type.

Ques 38.

If Km,n for m, n ≥ 2 is Hamiltonian, how are m and n related? Justify your answer.

Ques 39.

Show that if 7 colours are used to paint 50 bicycles and each bicycle is coloured with a single colour, at least 8 bicycles will have the same colour.

Ques 40.

A box contains 6 red and 4 green balls. Four balls are selected from the box at random. What is the probability that two of the selected balls will be red and two will be green?

Ques 41.

Define vertex connectivity and cut vertex set of any graph G. Find the vertex connectivity and cut vertex set for the following graph:

Ques 42.

How many numbers from 0 to 759 are not divisible by either 3 or 7?

Ques 43.

Solve the recurrence relation:

equation

using generating function technique. Also find a5 using your answer.

Ques 44.

Is there a 4-regular graph on 7 vertices? Justify your answer.

Ques 45.

Find the Boolean expression in the DNF form for the function defined in tabular form below:

Ques 46.

Check whether the following statements are true or not. Justify your answers with a short proof or a counter example

i) If the contrapositive of a statement is true, then the statement itself is also true.

ii)  equation is a linear homogeneous recurrence relation.

iii) A particular solution of the recurrence relationequationhas the form equation

iv) There exists a boolean expression in variables equation

equation

v) If a dice is rolled thrice, then the probability of getting a 6 each time is equation

vi) Every odd cycle has the same chromatic and edge chromatic numbers.

vii) Every Eulerian graph is Hamiltonian.

viii) 3 4 S gives the number of ways in which any 3 objects can be placed in any 4 boxes.

ix) There exists a self-complementary planar graph on 5 or more vertices.

x) The number of partitions of 6 is 10.

Ques 47.

Draw the logic circuit for the Boolean expressionequation

Ques 48.

Express the following statements in symbolic form.

i) There is a man in the park with blue eyes.

ii) Every blue-eyed man in the park is wearing a red hat.

iii) If a man wears no hat, then he has black eyes

Ques 49.

Using generating functions find equation

Ques 50.

There are about 77 crore ways to arrange the letters of the word “COMBINATORICS”. Count the exact number of such ways.

Ques 51.

Solve the recurrence relation:

equation

Ques 52.

List all the onto mappings from the set {a,b,c,d} to {1,2,3,4}. How many onto

mappings are there form {a,b,c,d} to {1,2,3,4,5}?

Ques 53.

For any statements p,q and r, prove thatequation

Ques 54.

Draw three nonisomorphic induced subgraphs of the following graph, each having the same number of vertices. Justify your choice.

Ques 55.

Is the complement of the Peterson graph planar? Justify your answer.b) Is the complement of the Peterson graph planar? Justify your answer.

 

Ques 56.

Is the complement of the Peterson graph planar? Justify your answer.

Ques 57.

What do you understand by a subdivision of a graph? Is every subdivision of a Hamiltonian graph Hamiltonian? Justify.

Ques 58.

In the June, 2021 Term-End Examination of MTE-13, it was asked to give a direct and an indirect proof of the following statement.

equationsuch that a is even and a +b is even, then   b is even."

One student gave an indirect proof as follows:

“Let b be m +1, which is an odd number. We already know a and a +b are even. If we substitute b + m +1 in a + b, it becomes a + m +1, which is an odd number. This contradicts the given statement. Hence b is an even number.”

What is wrong with the above proof ? Also give a correct direct and an indirect proof.

Ques 59.

write down and count all the partitions of the number 7. To verify your answer use the generating function for , Pn taking n= 7 in Theorem 5 (of Unit 5, Block2).

Ques 60.

Express 5 x in terms of falling factorials and hence evaluate m S5 for m = 0,1,2,3,4,5.

Ques 61.

Find a recurrence relation for an , the number of ways to arrange cars in a row with n spaces if we can use Maruti 800, Tata Safari or Scorpio. A Tata Safari or Scorpio requires two spaces, whereas a Maruti 800 requires just one space. Assume that you have unlimited number of each type of car and we do not distinguish between 2 cars of the same type.

Ques 62.

 equation is Hamiltonian, how are m and n related? Justify your answer

Ques 63.

Show that if 7 colours are used to paint 50 bicycles and each bicycle is coloured with a single colour, at least 8 bicycles will have the same colour.

Ques 64.

A box contains 6 red and 4 green balls. Four balls are selected from the box at random. What is the probability that two of the selected balls will be red and two will be green? 

Ques 65.

Define vertex connectivity and cut vertex set of any graph G. Find the vertex connectivity and cut vertex set for the following graph:

 

Ques 66.

How many numbers from 0 to 759 are not divisible by either 3 or 7?

Ques 67.

Solve the recurrence relation:

equation

using generating function technique. Also find 5 a using your answer.

Ques 68.

Is there a 4-regular graph on 7 vertices? Justify your answer.

Ques 69.

Find the Boolean expression in the DNF form for the function defined in tabular form below:

x y z equation
1 0 1 1
0 1 0 0
0 0 1 1
1 1 1 1
1 0 0 0
0 1 1 1
1 1 0 1
0 0 0 0

Rs. 90
Rs. 15
Details
  • Latest IGNOU Solved Assignment
  • IGNOU MTE 13 2025 Solved Assignment
  • IGNOU 2025 Solved Assignment
  • IGNOU BDP Bachelor Degree Programmes 2025 Solved Assignment
  • IGNOU MTE 13 Discrete Mathematics 2025 Solved Assignment

Looking for IGNOU MTE 13 Solved Assignment 2025. You are on the Right Website. We provide Help book of Solved Assignment of BDP MTE 13 - Discrete Mathematicsof year 2025 of very low price.
If you want this Help Book of IGNOU MTE 13 2025 Simply Call Us @ 9199852182 / 9852900088 or you can whatsApp Us @ 9199852182
 

IGNOU BDP Assignments Jan - July 2025 - IGNOU University has uploaded its current session Assignment of the BDP Programme for the session year 2025. Students of the BDP Programme can now download Assignment questions from this page. Candidates have to compulsory download those assignments to get a permit of attending the Term End Exam of the IGNOU BDP Programme.

Download a PDF soft copy of IGNOU MTE 13 Discrete Mathematics BDP Latest Solved Assignment for Session January 2025 - December 2025 in English Language.

If you are searching out Ignou BDP  MTE 13 solved assignment? So this platform is the high-quality platform for Ignou BDP  MTE 13 solved assignment. Solved Assignment Soft Copy & Hard Copy. We will try to solve all the problems related to your Assignment. All the questions were answered as per the guidelines. The goal of IGNOU Solution is democratizing higher education by taking education to the doorsteps of the learners and providing access to high quality material. Get the solved assignment for MTE 13 Discrete Mathematics course offered by IGNOU for the year 2025.Are you a student of high IGNOU looking for high quality and accurate IGNOU MTE 13 Solved Assignment 2025 English Medium? 

Students who are searching for IGNOU Bachelor Degree Programmes (BDP) Solved Assignments 2025 at low cost. We provide all Solved Assignments, Project reports for Masters & Bachelor students for IGNOU. Get better grades with our assignments! ensuring that our IGNOU Bachelor Degree Programmes Solved Assignment meet the highest standards of quality and accuracy.Here you will find some assignment solutions for IGNOU BDP Courses that you can download and look at. All assignments provided here have been solved.IGNOU MTE 13 SOLVED ASSIGNMENT 2025. Title Name MTE 13 English Solved Assignment 2025. Service Type Solved Assignment (Soft copy/PDF).

Are you an IGNOU student who wants to download IGNOU Solved Assignment 2024? IGNOU BACHELOR DEGREE PROGRAMMES Solved Assignment 2023-24 Session. IGNOU Solved Assignment and In this post, we will provide you with all solved assignments.

If you’ve arrived at this page, you’re looking for a free PDF download of the IGNOU BDP Solved Assignment 2025. BDP is for Bachelor Degree Programmes.

IGNOU solved assignments are a set of questions or tasks that students must complete and submit to their respective study centers. The solved assignments are provided by IGNOU Academy and must be completed by the students themselves.

Course Name Bachelor Degree Programmes
Course Code BDP
Programm BACHELOR DEGREE PROGRAMMES Courses
Language English

 

 

 
IGNOU MTE 13 Solved Assignment                                       
ignou assignment 2025,   2025 MTE 13
IGNOU MTE 13 Assignment
ignou solved assignment MTE 13
MTE 13 Assignment 2025
solved assignment MTE 13
MTE 13 Assignment 2025
assignment of ignou MTE 13
Download IGNOU MTE 13 Solved Assignment 2025
ignou assignments MTE 13
 
 
Ignou result MTE 13
Ignou Assignment Solution MTE 13
 

 



Comments


















Call Now
Contact Us
Welcome to IGNOU Academy

Click to Contact Us

Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088
New to IGNOU Login to Get Every Update