
| Title Name | IGNOU MTE 12 SOLVED ASSIGNMENT HINDI |
|---|---|
| Type | Soft Copy (E-Assignment) .pdf |
| University | IGNOU |
| Degree | BACHELOR DEGREE PROGRAMMES |
| Course Code | BSC |
| Course Name | Bachelor in Science |
| Subject Code | MTE 12 |
| Subject Name | Linear Programming |
| Year | 2026 |
| Session | |
| Language | English Medium |
| Assignment Code | MTE-012/Assignmentt-1//2026 |
| Product Description | Assignment of BSC (Bachelor in Science) 2026. Latest MTE 012 2026 Solved Assignment Solutions |
| Last Date of IGNOU Assignment Submission | Last Date of Submission of IGNOU MTE-012 (BSC) 2026 Assignment is for January 2026 Session: 30th September, 2026 (for December 2026 Term End Exam).Semester WiseJanuary 2026 Session: 30th March, 2026 (for June 2026 Term End Exam).July 2026 Session: 30th September, 2026 (for December 2026 Term End Exam). |
Ques 1.
बताइए निम्नलिखित कथनों में से कौन-से कथन सत्य हैं और कौन-से असत्य। अपने उत्तर की पुष्टि एक संक्षिप्त उपपत्ति या प्रत्युदाहरण द्वारा कीजिए
a) परिमित संख्या में अवमुख समुच्चयों का सर्वनिष्ठ अवमुख नहीं होता है।
b) यदि आव्यूह खेल
का मान 4 हो, तो
।
c) यदि किसी नियतन समस्या में लागत आव्यूह की प्रत्येक प्रविष्टि में 10 जोड़ा जाए, तो परिवर्तित लागत आव्यूह के लिए इष्टतम नियतन की कुल लागत में 10 की वृद्धि हो जाएगी।
d) किसी अधिकतमीकरण रैखिक प्रोग्रामन (LP) निदर्श में, जब सभी मान हों, तो एकधा विधि सम्पन्न हो जाती है।
e) एक परिवहन समस्या में अपभ्रष्ट हल से बचने के लिए काल्पनिक (dummy) स्रोत या गंतव्य जोड़ा जाता है।
Ques 2.
) निम्नलिखित दो खिलाड़ी शून्य योग खेल को प्रमुखता सिद्धांत द्वारा खेल में समानीत कीजिए और इस प्रकार खेल को हल कीजिए।
Ques 3.
निम्नलिखित आद्य रैखिक प्रोग्रामन (एलपी) समस्या की द्वैती प्राप्त कीजिए :
का अधिकतमीकरण कीजिए
जबकि
Ques 4.
एक कम्पनी दो प्रकार की चमड़े की बेल्ट बनाती है। बेल्ट A उच्च कोटि की व बेल्ट B निम्न कोटि की है। दोनों बेल्टों A और B पर लाभ क्रमशः ₹ 4 और ₹ 3 प्रति बेल्ट है। A प्रकार की बेल्ट को बनाने में B, प्रकार की बेल्ट को बनाने के समय से दुगुना समय लगता है और यदि सभी बेल्ट केवल B, प्रकार की ही हों, तो कम्पनी प्रतिदिन 1000 बेल्ट बना पाती है। चमड़े की पूर्ति भी प्रतिदिन केवल 800 बेल्टों (दोनों A और B प्रकार की मिलाकर) के लिए ही उपलब्ध है।
A प्रकार की बेल्ट के लिए एक फैन्सी तुकमें (बकल) की आवश्यकता है और प्रतिदिन केवल 400 तुकमें (बकल) ही उपलब्ध हैं। B. प्रकार की बेल्ट के लिए प्रतिदिन 700 तुकमें ही उपलब्ध हैं। प्रत्येक प्रकार की बेल्ट का प्रतिदिन कितना उत्पादन होना चाहिए? इस समस्या को रैखिक प्रोग्रामन (LP) निदर्श में सूत्रित कीजिए और इसे ग्राफीय-विधि द्वारा हल कीजिए।
b) उत्तर-पश्चिम कोना विधि का प्रयोग करके निम्नलिखित परिवहन समस्या का प्रारम्भिक आधारी सुसंगत हल ज्ञात कीजिए :
Ques 5.
. State which of the following statements are true and which are false. Give reasons for your answer with a short proof or a counter example.
a) The intersection of finite number of convex sets is not convex.
b) If value of the matrix game
is 4, then
.
c) If 10 is added to each of the entries of the cost matrix of a assignment problem, then the total cost of an optimal assignment for the changed cost matrix will increase by 10.
d) For maximization LP model, the simplex method is terminated when all values .
e) The dummy source or destination in a transportation problem is added to prevent solution from becoming degenerate.
Ques 6.
Reduce the following two person zero sum game to game using principle of dominance. And hence solve the game.
Player B
b) Obtain the dual of the following primal LP problem:
Maximize
Subject to $
$
Ques 7.
A company makes two kinds of leather belts. Belts A is high quality belt and belt B is of lower quality. The respective profits on A and B are ₹ 4 and ₹ 3 per belt. The production of each type A requires twice as much time as a belt. The production of each type of type B, and if all belts were of type B, the company could make 1000 belts per day. The supply of leather is sufficient for only 800 belts per day (both A
and B combined). Belt A require a fancy buckle and only 400 buckles per day are available. There are only 700 buckles a day available for belt B. What should be the daily production of each type of belt? Formulate this problem as an LP model and solve it by the graphical method.
b) Find the initial basic feasible solution of the following transportation problem using North-West Corner method.
Ques 8.
wo breakfast food manufacturers ABC and XYZ are competing for an increased market share. The pay-off matrix, shown in the following table, describes the increase in market share for ABC and decrease in market share of XYZ. Determine optimal strategies for both the manufacturers and the value of the game.
b) Find all the basic feasible solutions of the following system of linear equations:
$
$
$
Check if any of them is degenerate solution. Justify your answer.
Ques 9.
A department has five employees with five jobs to be performed. The time (in hours) each employee will take to perform each job is given in the following matrix. How should the jobs be allocated, one per employee, so as to minimize the total man hours?
b) For the following pay-off matrix, transform the zero-sum game into an equivalent linear programming problem:
Ques 10.
Using matrix – minima method, find the initial basic feasible solution of the following transportation problem:
Hence find the optimal solution.
b) Check whether the following set is convex:
Ques 11.
) Using matrix – minima method, find the initial basic feasible solution of the following transportation problem:
Hence find the optimal solution.
b) Check whether the following set is convex:
$
Ques 12.
) For what value of k are the following vectors linearly independent?$
b) Solve the following LP problem using simplex method:
Maximize
Subject to $
$
$
Ques 13.
Write the LPP formulation of the following transportation problem:
| Destination | Supply | |||
|---|---|---|---|---|
| $D_1$ | $D_2$ | $D_3$ | ||
| Source $O_1$ | 10 | 18 | 12 | 200 |
| Source $O_2$ | 15 | 17 | 9 | 300 |
| Source $O_3$ | 13 | 15 | 7 | 500 |
| Requirement | 400 | 200 | 400 |
b) Solve the following assignment problem for profit maximization:
Ques 14.
Write the LPP formulation of the following assignment problem:
b) Solve the following game graphically:
Ques 15.
Solve the following LPP graphically:
Maximize:
$
subject to the constraints:$
$
$
b) Find all values of k for which the vectors:$
are linearly independent.
Ques 16.
बताइए निम्नलिखित कथनों में से कौन-से कथन सत्य हैं और कौन-से असत्य। अपने उत्तर की पुष्टि एक संक्षिप्त उपपत्ति या प्रत्युदाहरण द्वारा कीजिए
a) परिमित संख्या में अवमुख समुच्चयों का सर्वनिष्ठ अवमुख नहीं होता है।
b) यदि आव्यूह खेल
का मान 4 हो, तो
।
c) यदि किसी नियतन समस्या में लागत आव्यूह की प्रत्येक प्रविष्टि में 10 जोड़ा जाए, तो परिवर्तित लागत आव्यूह के लिए इष्टतम नियतन की कुल लागत में 10 की वृद्धि हो जाएगी।
d) किसी अधिकतमीकरण रैखिक प्रोग्रामन (LP) निदर्श में, जब सभी मान हों, तो एकधा विधि सम्पन्न हो जाती है।
e) एक परिवहन समस्या में अपभ्रष्ट हल से बचने के लिए काल्पनिक (dummy) स्रोत या गंतव्य जोड़ा जाता है।
Ques 17.
) निम्नलिखित दो खिलाड़ी शून्य योग खेल को प्रमुखता सिद्धांत द्वारा खेल में समानीत कीजिए और इस प्रकार खेल को हल कीजिए।
Ques 18.
निम्नलिखित आद्य रैखिक प्रोग्रामन (एलपी) समस्या की द्वैती प्राप्त कीजिए :
का अधिकतमीकरण कीजिए
जबकि
Ques 19.
एक कम्पनी दो प्रकार की चमड़े की बेल्ट बनाती है। बेल्ट A उच्च कोटि की व बेल्ट B निम्न कोटि की है। दोनों बेल्टों A और B पर लाभ क्रमशः ₹ 4 और ₹ 3 प्रति बेल्ट है। A प्रकार की बेल्ट को बनाने में B, प्रकार की बेल्ट को बनाने के समय से दुगुना समय लगता है और यदि सभी बेल्ट केवल B, प्रकार की ही हों, तो कम्पनी प्रतिदिन 1000 बेल्ट बना पाती है। चमड़े की पूर्ति भी प्रतिदिन केवल 800 बेल्टों (दोनों A और B प्रकार की मिलाकर) के लिए ही उपलब्ध है।
A प्रकार की बेल्ट के लिए एक फैन्सी तुकमें (बकल) की आवश्यकता है और प्रतिदिन केवल 400 तुकमें (बकल) ही उपलब्ध हैं। B. प्रकार की बेल्ट के लिए प्रतिदिन 700 तुकमें ही उपलब्ध हैं। प्रत्येक प्रकार की बेल्ट का प्रतिदिन कितना उत्पादन होना चाहिए? इस समस्या को रैखिक प्रोग्रामन (LP) निदर्श में सूत्रित कीजिए और इसे ग्राफीय-विधि द्वारा हल कीजिए।
b) उत्तर-पश्चिम कोना विधि का प्रयोग करके निम्नलिखित परिवहन समस्या का प्रारम्भिक आधारी सुसंगत हल ज्ञात कीजिए :
Ques 20.
. State which of the following statements are true and which are false. Give reasons for your answer with a short proof or a counter example.
a) The intersection of finite number of convex sets is not convex.
b) If value of the matrix game
is 4, then
.
c) If 10 is added to each of the entries of the cost matrix of a assignment problem, then the total cost of an optimal assignment for the changed cost matrix will increase by 10.
d) For maximization LP model, the simplex method is terminated when all values .
e) The dummy source or destination in a transportation problem is added to prevent solution from becoming degenerate.
Ques 21.
Reduce the following two person zero sum game to game using principle of dominance. And hence solve the game.
Player B
b) Obtain the dual of the following primal LP problem:
Maximize
Subject to $
$
Ques 22.
A company makes two kinds of leather belts. Belts A is high quality belt and belt B is of lower quality. The respective profits on A and B are ₹ 4 and ₹ 3 per belt. The production of each type A requires twice as much time as a belt. The production of each type of type B, and if all belts were of type B, the company could make 1000 belts per day. The supply of leather is sufficient for only 800 belts per day (both A
and B combined). Belt A require a fancy buckle and only 400 buckles per day are available. There are only 700 buckles a day available for belt B. What should be the daily production of each type of belt? Formulate this problem as an LP model and solve it by the graphical method.
b) Find the initial basic feasible solution of the following transportation problem using North-West Corner method.
Ques 23.
wo breakfast food manufacturers ABC and XYZ are competing for an increased market share. The pay-off matrix, shown in the following table, describes the increase in market share for ABC and decrease in market share of XYZ. Determine optimal strategies for both the manufacturers and the value of the game.
b) Find all the basic feasible solutions of the following system of linear equations:
$
$
$
Check if any of them is degenerate solution. Justify your answer.
Ques 24.
A department has five employees with five jobs to be performed. The time (in hours) each employee will take to perform each job is given in the following matrix. How should the jobs be allocated, one per employee, so as to minimize the total man hours?
b) For the following pay-off matrix, transform the zero-sum game into an equivalent linear programming problem:
Ques 25.
Using matrix – minima method, find the initial basic feasible solution of the following transportation problem:
Hence find the optimal solution.
b) Check whether the following set is convex:
Ques 26.
) Using matrix – minima method, find the initial basic feasible solution of the following transportation problem:
Hence find the optimal solution.
b) Check whether the following set is convex:
$
Ques 27.
) For what value of k are the following vectors linearly independent?$
b) Solve the following LP problem using simplex method:
Maximize
Subject to $
$
$
Ques 28.
Write the LPP formulation of the following transportation problem:
| Destination | Supply | |||
|---|---|---|---|---|
| $D_1$ | $D_2$ | $D_3$ | ||
| Source $O_1$ | 10 | 18 | 12 | 200 |
| Source $O_2$ | 15 | 17 | 9 | 300 |
| Source $O_3$ | 13 | 15 | 7 | 500 |
| Requirement | 400 | 200 | 400 |
b) Solve the following assignment problem for profit maximization:
Ques 29.
Write the LPP formulation of the following assignment problem:
b) Solve the following game graphically:
Ques 30.
Solve the following LPP graphically:
Maximize:
$
subject to the constraints:$
$
$
b) Find all values of k for which the vectors:$
are linearly independent.
Looking for IGNOU MTE 12 Solved Assignment 2026. You are on the Right Website. We provide Help book of Solved Assignment of BSC MTE 12 - Linear Programmingof year 2026 of very low price.
If you want this Help Book of IGNOU MTE 12 2026 Simply Call Us @ 9199852182 / 9852900088 or you can whatsApp Us @ 9199852182
IGNOU BSC Assignments Jan - July 2025 - IGNOU University has uploaded its current session Assignment of the BSC Programme for the session year 2026. Students of the BSC Programme can now download Assignment questions from this page. Candidates have to compulsory download those assignments to get a permit of attending the Term End Exam of the IGNOU BSC Programme.
Download a PDF soft copy of IGNOU MTE 12 Linear Programming BSC Latest Solved Assignment for Session January 2025 - December 2025 in English Language.
If you are searching out Ignou BSC MTE 12 solved assignment? So this platform is the high-quality platform for Ignou BSC MTE 12 solved assignment. Solved Assignment Soft Copy & Hard Copy. We will try to solve all the problems related to your Assignment. All the questions were answered as per the guidelines. The goal of IGNOU Solution is democratizing higher education by taking education to the doorsteps of the learners and providing access to high quality material. Get the solved assignment for MTE 12 Linear Programming course offered by IGNOU for the year 2026.Are you a student of high IGNOU looking for high quality and accurate IGNOU MTE 12 Solved Assignment 2026 English Medium?
Students who are searching for IGNOU Bachelor in Science (BSC) Solved Assignments 2026 at low cost. We provide all Solved Assignments, Project reports for Masters & Bachelor students for IGNOU. Get better grades with our assignments! ensuring that our IGNOU Bachelor in Science Solved Assignment meet the highest standards of quality and accuracy.Here you will find some assignment solutions for IGNOU BSC Courses that you can download and look at. All assignments provided here have been solved.IGNOU MTE 12 SOLVED ASSIGNMENT 2026. Title Name MTE 12 English Solved Assignment 2026. Service Type Solved Assignment (Soft copy/PDF).
Are you an IGNOU student who wants to download IGNOU Solved Assignment 2024? IGNOU BACHELOR DEGREE PROGRAMMES Solved Assignment 2023-24 Session. IGNOU Solved Assignment and In this post, we will provide you with all solved assignments.
If you’ve arrived at this page, you’re looking for a free PDF download of the IGNOU BSC Solved Assignment 2026. BSC is for Bachelor in Science.
IGNOU solved assignments are a set of questions or tasks that students must complete and submit to their respective study centers. The solved assignments are provided by IGNOU Academy and must be completed by the students themselves.
| Course Name | Bachelor in Science |
| Course Code | BSC |
| Programm | BACHELOR DEGREE PROGRAMMES Courses |
| Language | English |
| IGNOU MTE 12 Solved Assignment | ignou assignment 2026, 2026 MTE 12 | ||
| IGNOU MTE 12 Assignment | ignou solved assignment MTE 12 | ||
| MTE 12 Assignment 2026 | solved assignment MTE 12 | ||
| MTE 12 Assignment 2026 | assignment of ignou MTE 12 | ||
| Download IGNOU MTE 12 Solved Assignment 2026 |
| ||
| Ignou result MTE 12 | Ignou Assignment Solution MTE 12 |
Click to Contact Us
Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088