
| Title Name | IGNOU BMTE 144 SOLVED ASSIGNMENT HINDI |
|---|---|
| Type | Soft Copy (E-Assignment) .pdf |
| University | IGNOU |
| Degree | BACHELOR DEGREE PROGRAMMES |
| Course Code | BSCG |
| Course Name | Bachelor of Science |
| Subject Code | BMTE 144 |
| Subject Name | Numerical Analysis |
| Year | 2026 |
| Session | |
| Language | English Medium |
| Assignment Code | BMTE-144/Assignmentt-1//2026 |
| Product Description | Assignment of BSCG (Bachelor of Science) 2026. Latest BMTE 144 2026 Solved Assignment Solutions |
| Last Date of IGNOU Assignment Submission | Last Date of Submission of IGNOU BMTE-144 (BSCG) 2026 Assignment is for January 2026 Session: 30th September, 2026 (for December 2026 Term End Exam).Semester WiseJanuary 2026 Session: 30th March, 2026 (for June 2026 Term End Exam).July 2026 Session: 30th September, 2026 (for December 2026 Term End Exam). |
Ques 1.
बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। अपने उत्तर की पुष्टि के लिए एक लघु उपपत्ति या प्रत्युदाहरण दीजिए।
क) समीकरण का अंतराल [3, 5] में कोई मूल नहीं है।
ख) , जहाँ E स्थानांतरी संकारक और
अग्रांतर संकारक हैं।
ग) प्रत्येक रैखिक समीकरण निकाय LU वियोजन विधि से हल किया जा सकता है।
घ) आंकड़ों (2, 4), (1, 5), (3, 6) के लिए न्यूटन विभाजित अंतर f[x0, x1, x2] का मान है।
ङ) न्यूटन-रैफसन विधि से किसी धन वास्तविक संख्या का घनमूल ज्ञात नहीं किया जा सकता है।
Ques 2.
निम्नलिखित तालिका में लुप्त मान ज्ञात कीजिए :
Ques 3.
आदि मान समस्या जहां
के लिए चिरप्रतिष्ठित चतुर्थ कोटि रुंगे-कुट्टा विधि द्वारा y(1.2) का सन्निकट मान ज्ञात कीजिए।
Ques 4.
न्यूटन-रैफसन विधि द्वारा समीकरण का सन्निकट मूल ज्ञात कीजिए।
लेकर केवल 3 पुनरावृत्तियाँ कीजिए।
ख) द्विघाती समीकरण के मूल
और
दिए गए हैं। दिखाइए कि पुनरावृत्ति
के समीप अभिसरित होगी जब
के मान ज्ञात कीजिए।
Ques 5.
यदि , तो C1 और C2।
Ques 6.
क) समीकरण निकाय$
को हल करने के लिए गाउस-सीडल विधि का प्रयोग किया गया। विधि की अभिसरण दर ज्ञात कीजिए।
Ques 7.
अभिसरण दर ज्ञात कीजिए।
ख) निम्नलिखित आंकड़ों के लिए न्यूटन के विभाजित अंतर सूत्र द्वारा अंतर्वेशन बहुपद ज्ञात कीजिए :
| x | 0 | 1 | 2 | 4 |
| y | 1 | 1 | 2 | 5 |
Ques 8.
सांशलेषिक विभाजन विधि का प्रयोग करके यह दर्शाइए कि 2, समीकरण का एक सरल मूल है।
Ques 9.
सरलतम रूप में एक ऐसा अंतर्वेशन बहुपद प्राप्त कीजिए जो निम्नलिखित आंकड़ों को आसंजित करता हो :
| x | -1 | 0 | 1 | 2 |
| f (x) | 3 | -4 | 5 | -6 |
Ques 10.
सिद्ध कीजिए कि ।
Ques 11.
समीकरण का साधारण मूल ज्ञात करने के लिए पुनरावृत्ति विधि
$
की अभिसरण कोटि निर्धारित कीजिए।
Ques 12.
घात विधि द्वारा निम्नलिखित आव्यूह का परिमाण में अधिकतम आइगेनमान व संगत आइगेनसदिश ज्ञात कीजिए :$
प्रारम्भिक सन्निकटन (1, 0, 0)T लेकर 4 पुनरावृत्तियाँ कीजिए।
Ques 13.
विधि$
जहाँ N एक धन अचर है, N1/3 की ओर अभिसरित होती है। विधि की अभिसरण दर ज्ञात कीजिए।
Ques 14.
क) और
लेकर समलंबी नियम द्वारा
का मूल्यांकन कीजिए। रॉम्बर्ग विधि द्वारा
का सर्वोत्तम मान ज्ञात कीजिए।
Ques 15.
गर्शगोरिन परिबंधों का प्रयोग करके आव्यूह$
के आइगेनमान आकलित कीजिए।
Ques 16.
ऑयलर विधि से आदि मान समस्या को हल कीजिए$
लेते हुए y(3.1) ज्ञात कीजिए।
Ques 17.
निम्नलिखित समीकरण निकाय को हल करने के लिए गाउस–सीडल पुनरावृत्ति विधि को आव्यूह रूप में स्थापित कीजिए :
$
दिखाइए कि पुनरावृत्ति विधि अभिसरित होती है और अतः इसकी अभिसरण दर ज्ञात कीजिए। (5)
Ques 18.
रैखिक अंतर्वेशन में त्रुटि लिखिए। इस तरह, दिखाइए कि त्रुटि$
जहाँ ।
Ques 19.
) निम्नलिखित आंकड़ों के लिए, गाउस पश्चांतर विधि का प्रयोग करके को अंतर्वेशी करने वाला बहुपद प्राप्त कीजिए :
| x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| f (x) | 1.40 | 1.56 | 1.76 | 2.00 | 2.28 |
Ques 20.
निम्नलिखित आंकड़ों के लिए, गाउस पश्चांतर विधि का प्रयोग करके को अंतर्वेशी करने वाला बहुपद प्राप्त कीजिए :
| x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| f (x) | 1.40 | 1.56 | 1.76 | 2.00 | 2.28 |
अतः, f(0.45) का मान ज्ञात कीजिए।
Ques 21.
विश्रामावस्था से आरंभ कर रही एक गाड़ी का वेग पहले घंटे के लिए निम्नलिखित तालिका में दिया गया है। सिम्पसन का नियम लागू करके, इस घंटे में गाड़ी द्वारा तय की गई दूरी ज्ञात कीजिए :
Ques 22.
विश्रामावस्था से आरंभ कर रही एक गाड़ी का वेग पहले घंटे के लिए निम्नलिखित तालिका में दिया गया है। सिम्पसन
का नियम लागू करके, इस घंटे में गाड़ी द्वारा तय की गई दूरी ज्ञात कीजिए :
Ques 23.
State whether the following statements are true or false. Give a Short proof or a counter-example in support of your answer.
a) The equation has not root in the interval [3, 5].
b) , where E is the shift operator and
is the forward difference operator.
c) Every system of linear equations can be solved using the LU decomposition method.
d) For the data (2, 4), (1, 5), (3, 6) the Newton's divided difference f[x0, x1, x2] is .
e) The Newton-Raphson method cannot be used to find a cube root of a positive real number.
Ques 24.
Find the missing values in the following table:
| x | 0 | 1 | 2 | 3 | 4 | 5 |
| y | 0 | 2 | - | 18 | - | 90 |
Ques 25.
Using Classical Runge-Kutta fourth order method, find an approximate value of y(1.2) for the IVP ,
with
.
Ques 26.
Find the approximate root of the equation using Newton-Raphson method. Perform only 3 iterations with
.
Ques 27.
The roots of the quadratic equation are given by
and
. Show that the iteration
will converge near
when
.
Ques 28.
If , find the values of C1 and C2.
Ques 29.
The Gauss-Seidel method is used to solve the system of equations
Determine the rate of convergence of the method.
Ques 30.
Find the interpolating polynomial by Newton’s divided difference formula for the following data:
| x | 0 | 1 | 2 | 4 |
| y | 1 | 1 | 2 | 5 |
Ques 31.
Using synthetic division method, show that 2 is a simple root of the equation
.
Ques 32.
Obtain the interpolating polynomial in simplest form which fits the following data:
| x | -1 | 0 | 1 | 2 |
| f(x) | 3 | -4 | 5 | -6 |
Ques 33.
Prove that .
Ques 34.
Determine the order of convergence of the iterative method
for finding a simple root of the equation .
Ques 35.
Determine the largest eigenvalue in magnitude and the corresponding eigenvector of the matrix using the power method. Take (1, 0, 0)T as the initial approximation and perform 4 iterations.
Ques 36.
The method
where N is a positive constant, converges to N1/3. Find the rate of convergence of the method.
Ques 37.
Evaluate by using trapezoidal rule with
and
. Use Romber's m
Ques 38.
) Evaluate by using trapezoidal rule with
and
. Use Romber's method to find the best value of
.
Ques 39.
) Evaluate by using trapezoidal rule with
and
. Use Romber's method to find the best value of
.
) Estimate the eigenvalues of the matrix
using the Gerschgorin bounds.
Ques 40.
Solve the initial value problem using Euler method
Find y(3.1) taking .
Ques 41.
Set up the Gauss-Seidel iteration scheme in matrix form for solving the system of equations
Show that the method is convergent and hence find its rate of convergence.
Ques 42.
Write the error in linear interpolation. Hence, show that
where
Ques 43.
For the following data, use Gauss backward difference method to obtain the interpolating polynomial f(x):
| x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| f(x) | 1.40 | 1.56 | 1.76 | 2.00 | 2.28 |
Hence, find the value of f(0.45).
Ques 44.
The velocity of a vehicle beginning from rest is given in the following table for part of the first four. Using Simpson's rule, find the distance travelled by the vehicle in this hour:
|
| 10 | 20 | 30 | 40 | 50 | 60 |
|
| 80 | 60 | 70 | 75 | 70 | 80 |
Ques 45.
Find the inverse of the matrix using Gauss-Jordan method.
Ques 46.
Divide the polynomial
x5 - 6x4 + 8x3 + 8x2 + 4x - 40
by (x - 3) by the synthetic division method and find the remainder.
Ques 47.
Determine a unique polynomial f(x) of degree such that
,
,
,
, where
.
Ques 48.
Which of the following statements are true? Give reasons for your answers.
i) If a group G is isomorphic to one of its proper subgroups, then .
ii) If x and y are elements of a non-abelian group (G, ) such that , then
or
, where e is the identity of G with respect to $$.
iii) There exists a unique non-abelian group of prime order.
iv) If , where A is a group, then
.
v) If H and K are normal subgroups of a group G, then .
Ques 49.
Prove that every non-trivial subgroup of a cyclic group has finite index. Hence prove that is not cyclic.
Ques 50.
Let G be an infinite group such that for any non-trivial subgroup H of . Then prove that
i) or H is infinite;
ii) If , then o(g) is infinite.
Ques 51.
Prove that a cyclic group with only one generator can have at most 2 elements.
Ques 52.
Using Cayley’s theorem, find the permutation group to which a cyclic group of order 12 is isomorphic.
Ques 53.
Let be a fixed odd permutation in S10. Show that every odd permutation in S10 is a product of
and some permutation in A10.
Ques 54.
List two distinct cosets of in D10, where r is a reflection in D10.
Ques 55.
Give the smallest for which An is non-abelian. Justify your answer.
Ques 56.
Use the Fundamental Theorem of Homomorphism for Groups to prove the following theorem, which is called the Zassenhaus (Butterfly) Lemma:
Let H and K be subgroups of a group G and H' and K' be normal subgroups of H and K, respectively. Then
i)
ii)
iii)
The situation can be represented by the subgroup diagram below, which explains the name ‘butterfly’.
PART-B (MM: 30 Marks)
(Based on Block 3.)
Ques 57.
Which of the following statements are true, and which are false? Give reasons for your answers.
i) For any ring R and .
ii) Every ring has at least two elements.
iii) If R is a ring with identity and I is an ideal of R, then the identity of R/I is the same as the identity of R.
iv) If is a ring homomorphism, then it is a group homomorphism from (R, +) to (S, +).
v) If R is a ring, then any ring homomorphism from into R is surjective.
Ques 58.
For an ideal I of a commutative ring R, define. Show that
i) is an ideal of R.
ii) .
iii) in some cases.
Ques 59.
For an ideal I of a commutative ring R, define. Show that
i) is an ideal of R.
ii) .
iii) in some cases.
Ques 60.
Is , for any two ideals I and J of a ring R? Give reasons for your answer.
Ques 61.
Let S be a set, R a ring and f be a 1-1 mapping of S onto R. Define + and on S by:
.
Show that is a ring isomorphic to R.
PART-C (MM: 20 Marks)
(Based on Block 4.)
Ques 62.
Which of the following statements are true, and which are false? Give reasons for your answers.
i) If k is a field, then so is .
ii) If R is an integral domain and I is an ideal of R, then .
iii) In a domain, every prime ideal is a maximal ideal.
iv) If R is a ring with zero divisors, and S is a subring of R, then S has zero divisors.
v) If R is a ring and is of degree
, then f(x) has exactly n roots in R.
Ques 63.
Find all the units of .
Ques 64.
Check whether or not is a field.
Ques 65.
Construct a field with 125 elements.
Ques 66.
बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। अपने उत्तर की पुष्टि के लिए एक लघु उपपत्ति या प्रत्युदाहरण दीजिए।
क) समीकरण का अंतराल [3, 5] में कोई मूल नहीं है।
ख) , जहाँ E स्थानांतरी संकारक और
अग्रांतर संकारक हैं।
ग) प्रत्येक रैखिक समीकरण निकाय LU वियोजन विधि से हल किया जा सकता है।
घ) आंकड़ों (2, 4), (1, 5), (3, 6) के लिए न्यूटन विभाजित अंतर f[x0, x1, x2] का मान है।
ङ) न्यूटन-रैफसन विधि से किसी धन वास्तविक संख्या का घनमूल ज्ञात नहीं किया जा सकता है।
Ques 67.
निम्नलिखित तालिका में लुप्त मान ज्ञात कीजिए :
Ques 68.
आदि मान समस्या जहां
के लिए चिरप्रतिष्ठित चतुर्थ कोटि रुंगे-कुट्टा विधि द्वारा y(1.2) का सन्निकट मान ज्ञात कीजिए।
Ques 69.
न्यूटन-रैफसन विधि द्वारा समीकरण का सन्निकट मूल ज्ञात कीजिए।
लेकर केवल 3 पुनरावृत्तियाँ कीजिए।
ख) द्विघाती समीकरण के मूल
और
दिए गए हैं। दिखाइए कि पुनरावृत्ति
के समीप अभिसरित होगी जब
के मान ज्ञात कीजिए।
Ques 70.
यदि , तो C1 और C2।
Ques 71.
क) समीकरण निकाय$
को हल करने के लिए गाउस-सीडल विधि का प्रयोग किया गया। विधि की अभिसरण दर ज्ञात कीजिए।
Ques 72.
अभिसरण दर ज्ञात कीजिए।
ख) निम्नलिखित आंकड़ों के लिए न्यूटन के विभाजित अंतर सूत्र द्वारा अंतर्वेशन बहुपद ज्ञात कीजिए :
| x | 0 | 1 | 2 | 4 |
| y | 1 | 1 | 2 | 5 |
Ques 73.
सांशलेषिक विभाजन विधि का प्रयोग करके यह दर्शाइए कि 2, समीकरण का एक सरल मूल है।
Ques 74.
सरलतम रूप में एक ऐसा अंतर्वेशन बहुपद प्राप्त कीजिए जो निम्नलिखित आंकड़ों को आसंजित करता हो :
| x | -1 | 0 | 1 | 2 |
| f (x) | 3 | -4 | 5 | -6 |
Ques 75.
सिद्ध कीजिए कि ।
Ques 76.
समीकरण का साधारण मूल ज्ञात करने के लिए पुनरावृत्ति विधि
$
की अभिसरण कोटि निर्धारित कीजिए।
Ques 77.
घात विधि द्वारा निम्नलिखित आव्यूह का परिमाण में अधिकतम आइगेनमान व संगत आइगेनसदिश ज्ञात कीजिए :$
प्रारम्भिक सन्निकटन (1, 0, 0)T लेकर 4 पुनरावृत्तियाँ कीजिए।
Ques 78.
विधि$
जहाँ N एक धन अचर है, N1/3 की ओर अभिसरित होती है। विधि की अभिसरण दर ज्ञात कीजिए।
Ques 79.
क) और
लेकर समलंबी नियम द्वारा
का मूल्यांकन कीजिए। रॉम्बर्ग विधि द्वारा
का सर्वोत्तम मान ज्ञात कीजिए।
Ques 80.
गर्शगोरिन परिबंधों का प्रयोग करके आव्यूह$
के आइगेनमान आकलित कीजिए।
Ques 81.
ऑयलर विधि से आदि मान समस्या को हल कीजिए$
लेते हुए y(3.1) ज्ञात कीजिए।
Ques 82.
निम्नलिखित समीकरण निकाय को हल करने के लिए गाउस–सीडल पुनरावृत्ति विधि को आव्यूह रूप में स्थापित कीजिए :
$
दिखाइए कि पुनरावृत्ति विधि अभिसरित होती है और अतः इसकी अभिसरण दर ज्ञात कीजिए। (5)
Ques 83.
रैखिक अंतर्वेशन में त्रुटि लिखिए। इस तरह, दिखाइए कि त्रुटि$
जहाँ ।
Ques 84.
) निम्नलिखित आंकड़ों के लिए, गाउस पश्चांतर विधि का प्रयोग करके को अंतर्वेशी करने वाला बहुपद प्राप्त कीजिए :
| x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| f (x) | 1.40 | 1.56 | 1.76 | 2.00 | 2.28 |
Ques 85.
निम्नलिखित आंकड़ों के लिए, गाउस पश्चांतर विधि का प्रयोग करके को अंतर्वेशी करने वाला बहुपद प्राप्त कीजिए :
| x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| f (x) | 1.40 | 1.56 | 1.76 | 2.00 | 2.28 |
अतः, f(0.45) का मान ज्ञात कीजिए।
Ques 86.
विश्रामावस्था से आरंभ कर रही एक गाड़ी का वेग पहले घंटे के लिए निम्नलिखित तालिका में दिया गया है। सिम्पसन का नियम लागू करके, इस घंटे में गाड़ी द्वारा तय की गई दूरी ज्ञात कीजिए :
Ques 87.
विश्रामावस्था से आरंभ कर रही एक गाड़ी का वेग पहले घंटे के लिए निम्नलिखित तालिका में दिया गया है। सिम्पसन
का नियम लागू करके, इस घंटे में गाड़ी द्वारा तय की गई दूरी ज्ञात कीजिए :
Ques 88.
State whether the following statements are true or false. Give a Short proof or a counter-example in support of your answer.
a) The equation has not root in the interval [3, 5].
b) , where E is the shift operator and
is the forward difference operator.
c) Every system of linear equations can be solved using the LU decomposition method.
d) For the data (2, 4), (1, 5), (3, 6) the Newton's divided difference f[x0, x1, x2] is .
e) The Newton-Raphson method cannot be used to find a cube root of a positive real number.
Ques 89.
Find the missing values in the following table:
| x | 0 | 1 | 2 | 3 | 4 | 5 |
| y | 0 | 2 | - | 18 | - | 90 |
Ques 90.
Using Classical Runge-Kutta fourth order method, find an approximate value of y(1.2) for the IVP ,
with
.
Ques 91.
Find the approximate root of the equation using Newton-Raphson method. Perform only 3 iterations with
.
Ques 92.
The roots of the quadratic equation are given by
and
. Show that the iteration
will converge near
when
.
Ques 93.
If , find the values of C1 and C2.
Ques 94.
The Gauss-Seidel method is used to solve the system of equations
Determine the rate of convergence of the method.
Ques 95.
Find the interpolating polynomial by Newton’s divided difference formula for the following data:
| x | 0 | 1 | 2 | 4 |
| y | 1 | 1 | 2 | 5 |
Ques 96.
Using synthetic division method, show that 2 is a simple root of the equation
.
Ques 97.
Obtain the interpolating polynomial in simplest form which fits the following data:
| x | -1 | 0 | 1 | 2 |
| f(x) | 3 | -4 | 5 | -6 |
Ques 98.
Prove that .
Ques 99.
Determine the order of convergence of the iterative method
for finding a simple root of the equation .
Ques 100.
Determine the largest eigenvalue in magnitude and the corresponding eigenvector of the matrix using the power method. Take (1, 0, 0)T as the initial approximation and perform 4 iterations.
Ques 101.
The method
where N is a positive constant, converges to N1/3. Find the rate of convergence of the method.
Ques 102.
Evaluate by using trapezoidal rule with
and
. Use Romber's m
Ques 103.
) Evaluate by using trapezoidal rule with
and
. Use Romber's method to find the best value of
.
Ques 104.
) Evaluate by using trapezoidal rule with
and
. Use Romber's method to find the best value of
.
) Estimate the eigenvalues of the matrix
using the Gerschgorin bounds.
Ques 105.
Solve the initial value problem using Euler method
Find y(3.1) taking .
Ques 106.
Set up the Gauss-Seidel iteration scheme in matrix form for solving the system of equations
Show that the method is convergent and hence find its rate of convergence.
Ques 107.
Write the error in linear interpolation. Hence, show that
where
Ques 108.
For the following data, use Gauss backward difference method to obtain the interpolating polynomial f(x):
| x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| f(x) | 1.40 | 1.56 | 1.76 | 2.00 | 2.28 |
Hence, find the value of f(0.45).
Ques 109.
The velocity of a vehicle beginning from rest is given in the following table for part of the first four. Using Simpson's rule, find the distance travelled by the vehicle in this hour:
|
| 10 | 20 | 30 | 40 | 50 | 60 |
|
| 80 | 60 | 70 | 75 | 70 | 80 |
Ques 110.
Find the inverse of the matrix using Gauss-Jordan method.
Ques 111.
Divide the polynomial
x5 - 6x4 + 8x3 + 8x2 + 4x - 40
by (x - 3) by the synthetic division method and find the remainder.
Ques 112.
Determine a unique polynomial f(x) of degree such that
,
,
,
, where
.
Ques 113.
Which of the following statements are true? Give reasons for your answers.
i) If a group G is isomorphic to one of its proper subgroups, then .
ii) If x and y are elements of a non-abelian group (G, ) such that , then
or
, where e is the identity of G with respect to $$.
iii) There exists a unique non-abelian group of prime order.
iv) If , where A is a group, then
.
v) If H and K are normal subgroups of a group G, then .
Ques 114.
Prove that every non-trivial subgroup of a cyclic group has finite index. Hence prove that is not cyclic.
Ques 115.
Let G be an infinite group such that for any non-trivial subgroup H of . Then prove that
i) or H is infinite;
ii) If , then o(g) is infinite.
Ques 116.
Prove that a cyclic group with only one generator can have at most 2 elements.
Ques 117.
Using Cayley’s theorem, find the permutation group to which a cyclic group of order 12 is isomorphic.
Ques 118.
Let be a fixed odd permutation in S10. Show that every odd permutation in S10 is a product of
and some permutation in A10.
Ques 119.
List two distinct cosets of in D10, where r is a reflection in D10.
Ques 120.
Give the smallest for which An is non-abelian. Justify your answer.
Ques 121.
Use the Fundamental Theorem of Homomorphism for Groups to prove the following theorem, which is called the Zassenhaus (Butterfly) Lemma:
Let H and K be subgroups of a group G and H' and K' be normal subgroups of H and K, respectively. Then
i)
ii)
iii)
The situation can be represented by the subgroup diagram below, which explains the name ‘butterfly’.
PART-B (MM: 30 Marks)
(Based on Block 3.)
Ques 122.
Which of the following statements are true, and which are false? Give reasons for your answers.
i) For any ring R and .
ii) Every ring has at least two elements.
iii) If R is a ring with identity and I is an ideal of R, then the identity of R/I is the same as the identity of R.
iv) If is a ring homomorphism, then it is a group homomorphism from (R, +) to (S, +).
v) If R is a ring, then any ring homomorphism from into R is surjective.
Ques 123.
For an ideal I of a commutative ring R, define. Show that
i) is an ideal of R.
ii) .
iii) in some cases.
Ques 124.
For an ideal I of a commutative ring R, define. Show that
i) is an ideal of R.
ii) .
iii) in some cases.
Ques 125.
Is , for any two ideals I and J of a ring R? Give reasons for your answer.
Ques 126.
Let S be a set, R a ring and f be a 1-1 mapping of S onto R. Define + and on S by:
.
Show that is a ring isomorphic to R.
PART-C (MM: 20 Marks)
(Based on Block 4.)
Ques 127.
Which of the following statements are true, and which are false? Give reasons for your answers.
i) If k is a field, then so is .
ii) If R is an integral domain and I is an ideal of R, then .
iii) In a domain, every prime ideal is a maximal ideal.
iv) If R is a ring with zero divisors, and S is a subring of R, then S has zero divisors.
v) If R is a ring and is of degree
, then f(x) has exactly n roots in R.
Ques 128.
Find all the units of .
Ques 129.
Check whether or not is a field.
Ques 130.
Construct a field with 125 elements.
Looking for IGNOU BMTE 144 Solved Assignment 2026. You are on the Right Website. We provide Help book of Solved Assignment of BSCG BMTE 144 - Numerical Analysisof year 2026 of very low price.
If you want this Help Book of IGNOU BMTE 144 2026 Simply Call Us @ 9199852182 / 9852900088 or you can whatsApp Us @ 9199852182
IGNOU BSCG Assignments Jan - July 2026 - IGNOU University has uploaded its current session Assignment of the BSCG Programme for the session year 2026. Students of the BSCG Programme can now download Assignment questions from this page. Candidates have to compulsory download those assignments to get a permit of attending the Term End Exam of the IGNOU BSCG Programme.
Download a PDF soft copy of IGNOU BMTE 144 Numerical Analysis BSCG Latest Solved Assignment for Session January 2026 - December 2026 in English Language.
If you are searching out Ignou BSCG BMTE 144 solved assignment? So this platform is the high-quality platform for Ignou BSCG BMTE 144 solved assignment. Solved Assignment Soft Copy & Hard Copy. We will try to solve all the problems related to your Assignment. All the questions were answered as per the guidelines. The goal of IGNOU Solution is democratizing higher education by taking education to the doorsteps of the learners and providing access to high quality material. Get the solved assignment for BMTE 144 Numerical Analysis course offered by IGNOU for the year 2026.Are you a student of high IGNOU looking for high quality and accurate IGNOU BMTE 144 Solved Assignment 2026 English Medium?
Students who are searching for IGNOU Bachelor of Science (BSCG) Solved Assignments 2026 at low cost. We provide all Solved Assignments, Project reports for Masters & Bachelor students for IGNOU. Get better grades with our assignments! ensuring that our IGNOU Bachelor of Science Solved Assignment meet the highest standards of quality and accuracy.Here you will find some assignment solutions for IGNOU BSCG Courses that you can download and look at. All assignments provided here have been solved.IGNOU BMTE 144 SOLVED ASSIGNMENT 2026. Title Name BMTE 144 English Solved Assignment 2026. Service Type Solved Assignment (Soft copy/PDF).
Are you an IGNOU student who wants to download IGNOU Solved Assignment 2024? IGNOU BACHELOR DEGREE PROGRAMMES Solved Assignment 2023-24 Session. IGNOU Solved Assignment and In this post, we will provide you with all solved assignments.
If you’ve arrived at this page, you’re looking for a free PDF download of the IGNOU BSCG Solved Assignment 2026. BSCG is for Bachelor of Science.
IGNOU solved assignments are a set of questions or tasks that students must complete and submit to their respective study centers. The solved assignments are provided by IGNOU Academy and must be completed by the students themselves.
| Course Name | Bachelor of Science |
| Course Code | BSCG |
| Programm | BACHELOR DEGREE PROGRAMMES Courses |
| Language | English |
| IGNOU BMTE 144 Solved Assignment | ignou assignment 2026, 2026 BMTE 144 | ||
| IGNOU BMTE 144 Assignment | ignou solved assignment BMTE 144 | ||
| BMTE 144 Assignment 2026 | solved assignment BMTE 144 | ||
| BMTE 144 Assignment 2026 | assignment of ignou BMTE 144 | ||
| Download IGNOU BMTE 144 Solved Assignment 2026 |
| ||
| Ignou result BMTE 144 | Ignou Assignment Solution BMTE 144 |
Click to Contact Us
Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088