Question
Let Y A : X0 ⊆ X → be a closed operator where X and Y are Banach spaces. Define x x Ax , x X . A = + ∈ 0 Then show that the norm A ⋅ is complete.
To show that the normed space \( (Y^A, \| \cdot \|_A) \) is complete, where \( Y^A \) is the space of equivalence classes of Cauchy sequences in \( Y \) with respect to the graph norm \( \| \cdot \|_A \), we need to demonstrate that every Cauchy sequence in \( Y^A \) converges to ____________ ____ ___ ___ _________ _______.
________ ___ _____________ _____________ _______ ___ __ ___.
________ ___ ______ ____ _________ ________ ____.
__ _____ __________ __ ________ _______ _________ _________ _________ ___________ ____ ____ _______ ________.
____________ _____________ _________ ___ ____ ________ __________ _____________ ____________ ___________ ____________.
________ __ ___ _______ _____________ ___________ _________ ____________.
__________ ___________ ____ _______ _____ _________.
____ _______ ________ _________ ______ _____ ___________ ___________ ________ ______.
_________ _____________ __________ ___ __ ______ ________ ________ ________ __________ ___________.
_____________ ______ _____ ___________ ______ ____________ ______ ______ _______ _____________.
________ _______ ___ ____ __________ __________ ________ ______ _________ __________.
_____________ _____ _______ __ _____________ _____ ________ ____________ ___________ ________ ___ __________ ____.
___ __ ___________ ____ ___________ ____ ____________ __________ ____.
____ _________ ____________ _____ _____________ ____________ ______ _____.
__________ ___ ___________ ____ ___ __ __ _________ ____________ __.
________ ________ ___ ____ _____________ ___________ ____ ____________ _______ ___________ ____________ ____ ________ ________.
_____ ____________ _________ _________ _____________ ____ _________ ____ ___________ ________ ______ ___ _____________.
_______ ______ _____ ____________ ________ ___.
_____ _______ _____________ ___ ________ ___ ___ ___________.
_______ ____________ _______ ______ ________ __ __________ _______ ______ __ _____.
__ _________ ______ ___________ ____ __ _________ _______ ___ ____ ________ ______ __ _________ _____________.
____________ _________ _______ _____ _______ ___ _________ ____ _______ ___________ __ _______ __.
_____ ___ ___________ ________.
Click Here to Order Full Assignment on WhatsApp
Let A be an operator on a Hilbert space .H Show if Ax A x ∗ = for every ,H x ∈ then A is normal. Is it converse true? Justify
State the principle of uniform boundedness. Use it to show that a set E in a normed space X is bounded if )E(f is bounded in K for every f ∈ X′.
Let ]1,0[ X = C′ and ] Y = 11,0[C and let T : X → Y be the linear operator from X to Y given by ,f )f(T = ′ the derivative of f on ].1,0[ Show that T is not continuous.
Show that the map 3 T : R3→ R2 given by ) T(x1 , x 2, x3 ) =(x1,+x2,+x3 is an open map
The space l3 is a Hilbert space
Let Y A : X0 ⊆ X → be a closed operator where X and Y are Banach spaces. Define x x Ax , x X . A = + ∈ 0 Then show that the norm A ⋅ is complete.
Find a bounded linear functional f on 3 l such that 3 e(f ) 3 = and || f|| = .3
Click to Contact Us
Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088