Question
Let H be a Hilbert space. For any subset A of ,H define . A ⊥ If ,H A ⊆ B ⊆ then show that:
i) B1⊆ A
ii) A ⊆ A ⊥⊥
State conditions on A⊥⊥ =A
Functional analysis is a branch of mathematics that deals with infinite-dimensional vector spaces and their transformations. In the context of a Hilbert space H, the orthogonal complement of a subset A, denoted by A⊥, consists of all vectors ________ _________ _________ ___ ____________ _____________ ______ ____________ ___________ __.
________ _____________ ___ ____ _____________ ____ ____________ ___________ _________ ______ _________ _________.
__________ ___ ______ ____ _________ ____________.
____ ___________ ________ __________ ___________ _______ __________ __ ___ __________ _______ _____ ____________.
____________ _____ ____________ ____________ ________ ________ __________ _________ _________ _________.
__________ __________ __________ ____ ____________ ____ _____________ _______ _______ ____ ________ _________ ___.
_____ _____ _____________ _______ ________ ____________ ____________ __________ _____ ___________.
__ __ ________ _____ __________ _____ _____ _____________ __________ _______ ___ _____________ __.
_____ ____________ _____ _____ ___ _________ ________ _____________.
_____________ __ ____________ ___ ____________ ___________ __ ______ ____ ________ ___ ____ ______ _________.
__________ ___________ ________ __________ _____ ___.
____________ ___ ________ ____ _____________ _____________ ______ ___________.
________ _________ _____ __ _______ _____________.
____ _______ ______ _______ __ _______.
__ ____________ __ ___ ________ _________.
_________ ______ _______ ____ ___ __________ ___________ ___________ _________ ____________ _________ ___ ____________ ____________ _________.
_____________ _______ ___ ______ _____________ __________ _____________.
____________ ___ ______ __________ _______ _________ ____ __________.
__ __ __________ _______ ___ ____________ _______ ______ _______ ___ _____ _____ ____________.
__ ______ ___ ______ __ _______ _____ _______ _____.
Click Here to Order Full Assignment on WhatsApp
If A is a bounded linear operator on a Hilbert space such that , AA* = I then A A*= I.
Let X be an inner product space with the inner product given by <, > . For ,X x ∈ define the function given by
the non negative square root of < x, x > . Show that
defines a norm on X and
for all .X ,x y∈ Also show that for all ,X ,
.
Find a bounded linear functional f on 3 l such that 3 e(f ) 3 = and || f|| = .3
Let X be a vector space. Let be two norms on .X When are these norms said to be equivalent? Justify your answer.
Let . X = For x=(x1,x2,x3)
Let
Show that and
are equivalent.
Let A be an operator on a Hilbert space .H Show if Ax A x ∗ = for every ,H x ∈ then A is normal. Is it converse true? Justify
Let ]1,0[ X = C′ and ] Y = 11,0[C and let T : X → Y be the linear operator from X to Y given by ,f )f(T = ′ the derivative of f on ].1,0[ Show that T is not continuous.
Let H be a Hilbert space. For any subset A of ,H define . A ⊥ If ,H A ⊆ B ⊆ then show that:
i) B1⊆ A
ii) A ⊆ A ⊥⊥
State conditions on A⊥⊥ =A
Click to Contact Us
Call - 9199852182 Call - 9852900088 myabhasolutions@gmail.com WhatsApp - 9852900088